References
[1]. Santos, I.O., Zhang, W., Gonçalves, V.M., Bay, N.,
Martins, P.A.F. (2004). “Weld bonding of stainless steel”, Int.
J. Mach. Tool Manuf., Vol. 44, pp. 1431–1439.
[2]. Zhang, Y., Taylor, D. (2001). “Optimization of spotwelded
structures”, Finite Elements Anal. Des., Vol. 37, No.
12, pp. 1013–1022.
[3]. Kahraman N. (2007). “The influence of welding
parameters on the joint strength of resistance spot-welded
titanium sheets”, J. Mater Design, Vol. 28, pp. 420–426.
[4]. Feulvarch, E., Robin, V., Bergheau, J.M. (2004).
“Resistance spot welding simulation: a general finite
element formulation of electrothermal contact
conditions”, J. Mater Process Technol, Vol. 153-154, pp.
436–441.
[5]. Thornton, P.H., Krause, A.R., Davies, R.G. (1996). “The
aluminum spot weld”, Weld. J., Vol. 75, pp. 101s-108s.
[6]. Wan, X., Wang, Y., Zhang, P. (2014). “Modeling the
effect of welding current on resistance spot welding of
DP600 steel”, Journal of Materials Processing Technology,
Vol. 214, pp. 2723–2729.
[7]. Martín, Ó., Pereda, M., Santos, J.I., Galán, J. (2014).
“Assessment of resistance spot welding quality based on
ultrasonic testing and tree-based techniques”, Journal of
Materials Processing Technology, Vol. 214, pp. 2478–2487.
[8]. Zhao, D., Wang, Y., Lin, Z., Sheng, S. (2013). “An
effective quality assessment method for small scale
resistance spot welding based on process parameters”,
NDT&E International, Vol. 55, pp. 36–41.
[9]. Alizadeh-Sh, M., Marashi, S.P, Pouranvari, M. (2014).
“Resistance spot welding of AISI 430 ferritic stainless steel:
Phase transformations and mechanical properties”,
Materials and Design, Vol. 56, pp. 258–263.
[10]. Pereira, A.M., Ferreira, J.M., Antunes, F.V., Bártolo, P.J.
(2009). “Effect of process parameters on the strength of
resistance spot welds in 6082-T6 aluminium alloy”, J. Mater
Design, Vol. 31, No. 5, pp. 2454-2463.
[11]. Zhang, J., Dong, P., Brust, F. (1999). “Residual stress
analysis and fracture assessment of weld joints in moment
frames, ASME PVP- Fracture”, Fatigue and Weld Residual
Stress, Vol. 393, pp. 201-207.
[12]. Preston, R., Smith, S., Shercliff, H., Withers, P. (1999). “An
investigation into the residual stresses in an aluminum 2024
Test Weld”, ASME PVP- Fracture, Fatigue and Weld Residual
Stress, Vol. 393, pp. 265-277.
[13]. Ranjbar, N., Serajzadeh, S., Kokabi, A.H. (2008).
“Simulation of welding residual stresses in resistance spot
welding, FE modeling and X-ray verification”, J. Mater
Process Technol., Vol. 205, pp. 60-69.
[14]. Tsai, C.L., Jammel, O.A., Papritan, J.C., Dickinson,
D.W. (1992). “Modeling of resistance spot weld nugget
growth”, Weld. J., Vol. 70, pp. 47s-45s.
[15]. Na, S.J., Park, S.W. (1996). “A theoretical study on
electrical and thermal response in resistance spot
welding”, Weld. J., Vol. 75, pp. 233s-241s.
[16]. Sun, X., Dong, P. (2000). “Analysis of aluminum
resistance spot welding process using coupled finite
element procedures”, Weld. J., Vol. 79, pp. 215s-221s.
[17]. Long, X., Khanna, S.K. (2003). “Numerical simulation
of residual stress in spot welded joints”, Trans. ASME, Vol. 125, pp. 222-226.
[18]. Talijiat, B., Radhakrishnan, B., Zacharia, T. (1998).
“Numerical analysis of GTA welding process with emphasis
on spot-solidification phase transformation effects on
residual stress”, Mater Sci. Eng. A, Vol. 246, pp. 45-54.
[19]. Cha, B.W., Na, S.J. (2003). “A study on the relationship
between welding conditions and residual stress of
resistance spot welded 304-type stainless steels”, J.
Manufacturing Systems, Vol. 22, pp. 181-189.
[20]. Deng, D. (2009). “FEM prediction of welding residual
stress and distortion in carbon steel considering phase
transformation effects”, J. Mater Design, Vol. 30, pp. 359-
366.
[21]. Kou, S. (2003). “Welding metallurgy”, John Wiley &
Sons, New Jersey.
[22]. Pouranvari, M., Asgari, H.R., Mosavizadeh, S.M.,
Marashi, P.H., Goodarzi, M. (2007). “Effect of weld nugget
size on overload failure mode of resistance spot welds”, Sci
Technol. Weld Join, Vol. 12, pp. 217–225.