References
[1]. Amirtharajan, R. & Rayappan, J. B. B., (2012). An
intelligent chaotic embedding approach to enhance
stego-image quality, Information Sciences Vol. 193, pp.
115-124
[2]. Bajaj, R., Bedi, P. & Pal, S. K., (2010). Best
hiding
capacity scheme for variable length messages using
particle swarm optimization, In Swarm, Evolutionary and
Memetic Computing, pp. 230-237. Springer Berlin,
Heidelberg.
[3]. Bansal A., Muttoo S. K.., Kumar V., (In Press).
Secure
Data Hiding along Randomly Selected Closed Knight Tour,
International Journal of Applied Security Research, Taylor
& Francis, Vol. 10, No. 4.
[4]. Borrell, R. (2009), A Brute Force Approach to Solving
the Knights Tour Problem Using Prolog, In IC-AI, pp. 600-
604.
[5]. Chan, C. K., & Cheng, L. M., (2004) Hiding data
in
images by simple LSB substitution, Pattern recognition,
Vol. 37, No. 3, 469-474
[6]. Douglas, M., (2014). Ants playing chess and finding
new solution to old problem, Popular Science, USA
[7]. Dumitrescu, S., Wu, X., & Wang, Z. (2003).
Detection of
LSB steganography via sample pair analysis, IEEE
Transactions on Signal Processing, Vol. 51, No. 7, 1995-
2007
[8]. Fridrich, J., Goljan, M., & Soukal, D. (2006).
Wet paper
codes with improved embedding efficiency. In Electronic
Imaging 2006, pp 607215-607215, International Society
for Optics and Photonics
[9]. Hoalkar, G. L., (2004). “The prime queen attack
problem”, http://www.cadaeic.net/primeq.htm
[10]. Iranpour, M., & Safabakhsh, R., (2014).
Reducing the embedding impact in steganography using Hamiltonian
paths and writing on wet paper, Multimedia Tools and
Applications, 99. 1-14
[11]. Ker, A. D., & Böhme, R., (2008, February)
Revisiting
weighted stego-image steganalysis. In Electronic
Imaging 2008, pp. 681905-681905, International Society
for Optics and Photonics
[12]. Kumar, S., & Muttoo, S. K., (2013). A
comparative
study of image steganography in wavelet domain,
International Journal of Computer Science and Mobile
Computing Vol. 2, No. 2, pp. 91-101
[13]. Löbbing, M., & Wegener, I., (1996). The
number of
knight's tours equals 33,439,123,484,294—counting with
binary decision diagrams. The Electronic Journal of
Combinatorics, 3(1), R5
[14]. McKay, B. D., (1997). Knight's tours of an
8× 8
chessboard, Tech Rpt TR-CS-97-03, Dept Computer
Science, Australian National University
[15]. Mielikainen, J., (2006). LSB matching revisited.
Signal
Processing Letters, IEEE, Vol. 13, No. 5, 285-287
[16]. Muttoo, S. K., Kumar, V. & Bansal, A,, (2012).
Secure
Data Hiding Using Eight Queens Solutions, International
Journal of Information Security & Privacy, USA, Vol. 6, No. 4,
pp 55-70.
[17]. Muttoo, S. K., & Kumar, S. (2008). A
mulltilayred
secure, robust and high capacity image steganographic algorithm. World of
Computer Science and Information
Technology Journal, 2221-0741.
[18]. Muttoo, S. K., & Kumar, S. (2009). Data hiding
in JPEG
images, International Journal of Information Technology
(IJIT), Vol. 1, pp. 13-16.
[19]. Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.,
(1999).
Information hiding– a survey. In: Proceedings of the IEEE
Special Issue on Identification and Protection of
Multimedia Content, Vol. 87, pp. 1062–1078
[20]. Thanikaiselvan, V., Arulmozhivarman, P.,
Amirtharajan, R., and Rayappan, J. B. B., (2012). Horse
riding & hiding in image for data guarding. Procedia
Engineering, Vol. 30, pp. 36-44.
[21]. U.S. Army Infantry School, (1984), Combat skill of
the
soldier, FM 21-75, 1-1.
[22]. V. Kumar, Bansal A., & Muttoo S. K., (2014).
Data
Hiding Method Based on Inter-block difference in Eight
queens Solutions and LSB Substitution”, International
Journal of Information Security & Privacy, USA, Vol. 8, No. 2,
pp. 42-52
[23]. Stallings, W., (1999). Cryptography & Network
Security: principles and practices, Prentice Hall: USA
[24]. Zhang, X., & Wang, S., (2006). Efficient
steganographic embedding by exploiting modification
direction, Communications Letters, IEEE, Vol. 10, No. 11,
781-783