A Multi-Band Trident Shape Microstrip Patch Antennafor GSM and Wide Band Application

Rajeewa Kumar Jaisawal*, Arvind Kumar Pandey**, R. K. Chauhan***
* M.Tech Student, Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India.
** Research Scholar, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India.
*** Professor, Department of ECE, Madan Mohan Malaviya University of Technology, Uttar Pradesh, India.
Periodicity:May - July'2015
DOI : https://doi.org/10.26634/jcs.4.3.3451

Abstract

In this paper, a modified trident shaped circularly polarized microstrip patch antenna of dimension 35x65 mm is presented which can be used in GSM, radar , satellite and wide band application. The dielectric substrate FR4_ epoxy used in this antenna has relative permittivity of 4.4 and dielectric loss tangent of 0.02. There are five resonance frequencies obtained at 1.78,6.56,8.12,9.36 and 11.78 GHz and impedance bandwidth calculated at these frequency bands are 18.17% (1.9392-1.6161), 1.192% (6.6095-6.5312), 19.40% (8.12-9.36), 6.59% (12.22-11.44) respectively, while simulating this antenna on High Frequency Structure Simulator (HFSS) tool.

Keywords

Trident, GSM, HFSS, Microstrip Antenna, Wideband Antenna

How to Cite this Article?

Jaisawal, R. K., Pandey, A., and Chauhan, R. K. (2015). A Multi-Band Trident Shape Microstrip Patch Antenna for GSM and Wide Band Application. i-manager’s Journal on Communication Engineering and Systems, 4(3), 9-14. https://doi.org/10.26634/jcs.4.3.3451

References

[1]. Satish K. Sharma, and Lotfollah Shafai, (2009). “Performance of a novel ? - shape microstrip patch antenna with wide impedance bandwidth", IEEE Antenna and Wireless Propagation Letters, Vol. 8.
[2]. R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, (2001). “Microstrip Antenna Design Handbook”, Boston, MA: Artech House1.
[3]. F. Yang and Y. Rahmat-Samii, (2001). “Wide-band Eshaped patch antennas for wireless communications,” IEEE Trans. Antennas Propag., Vol. 49, No. 7, pp. 1094–1100.
[4]. N. Jin and Y. Rahmat-Samii, (2005). “ Parellel particle swamp optimization and finite –difference time domain PSO/FDTD algorithm for multiband and wide band patch antenna design”, IEEE Trans. Antenna Propag., Vol. 53 , No. 11, pp. 3459-3468.
[5]. K. F. Lee et al., (1997). “Experimental and simulation studies of coaxially-fed U-slot rectangular patch antenna,” IEEE Proc. Microw., Antennas Propag., Vol. 144, pp. 354–358.
[6]. G. Kumar and K.P. Ray, (2003). “Broadband Microstrip Antennas”, Boston, MA :Artech House.
[7]. S. K. Sharma and L. Shafai, (2007). “Investigations of a novel ? -shape microstrip patch antenna with wide impedance bandwidtht,” in Proc. IEEE Int. Symp. Antennas Propag., HI, pp. 881–884.
[8]. Ahmed Khidre, Kai Fang Lee, Fan Yang, and Ate' Eisherbeni, (2010). “Wideband Circularly Polarized EShaped Patch Antenna for Wireless Applications”, IEEE Antennas and Propagation Magazine, Vol. 52, No.5.
[9]. J. Kula, D. Psychoudakis, W.-J. Liao, C.-c. Chen, J. Volakis, and J. Halloran, (2006). "Patch-antenna miniaturization using recently available ceramic substrates," IEEE Antennas Propag. Mag., Vol. 48, No. 6, pp.13-20.
[10]. D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, (1999). "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, pp. 2059-2074.
[11]. H. Mosallaei and K. Sarabandi, (2004). "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Trans. Antennas Propag., Vol. 52, No. 9, pp. 2403-2414.
[12]. P. Ikonen, S. Maslovski, C. Simovski, and S. Tretyakov, (2006). "On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 6, pp. 1654-1662.
[13]. G. Singh, (2010). "Double negative left-handed metamaterials for miniaturization of rectangular microstrip antenna," Journal of Electromagnetic Analysis and Applications, Vol. 2, No. 6, pp. 347-3510.
[14]. F. Falcone, T. Lopetegi, 1. Baena, R. Marques, F. Martin, and M. So rolla, (2004). "Effective negative- E stopband microstrip lines based on complementary split ring resonators," IEEE Microwave Wireless Compo Lett., Vol. 14, No. 6, pp. 280-282.
[15]. R. Ouedraogo, E. Rothwell, A. Diaz, K. Fuchi, and A. Temme, (2012). "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Trans. Antennas Propag., Vol. 60, No. 5, pp. 2175-2182.
[16]. Y. Dong, H. Toyao, and T. Itoh, (2012). "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators," IEEE Trans. Antennas Propag., Vol. 60, No. 2, pp. 772-785.
[17]. Jia-Sheng Hong; Lancaster M.J, (1998). “Recent progress in planar microwave filters,” IEEE Trans. Antennas Propagat., Vol. 2, pp.1134 – 1137.
[18]. C-S Kim, J-S Park, D. Ahn, J-B Lim, (2009). “A Novel 1-D Periodic Defected Ground Structure for Planar Circuits”, IEEE Microwave and Guided Wave Letters, Vol. 10, No. 4, pp. 131-133.
[19]. Ansoft HFSS ver. 13 [Online]. Available: http://www. ansoft.com/products/hf/hfss/
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.