References
[1]. H. R. Kalluri, S. Prasad, and L. M. Bruce, (2010).
“Decision-level fusion of spectral reflectance and
derivative information in robust hyper spectral land cover
classification,” IEEE Trans. Geosci. Remote Sens., Vol. 48,
No. 11, pp. 4047–4058, Nov.
[2]. D. Manolakis, C. Siracusa, and G. Shaw, (2001).
“Hyper spectral sub pixel target detection using the linear
mixing model,” IEEE Trans. Geosci. Remote Sens., Vol. 39,
No. 7, pp. 1392–1409, Jul.
[3]. B. Datt, T. R. McVicar, T. G. Van Niel, D. L. B. Jupp, and
J. S. Pearlman, (2003). “Preprocessing EO-1 hyper ion
hyper spectral data to support the application of
agricultural indexes,” IEEE Trans. Geosci. Remote Sens., Vol. 41, No. 6, pp. 1246–1259, Jun.
[4]. T. Schmid, M. Koch, and J. Gumuzzio, (2005).
“Multisensor approach to determine changes of wetland
characteristics in semi-arid environments (Central Spain),”
IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 11, pp.
2516–2525, Nov.
[5]. J. Pontius, M. Martin, L. Plourde, and R. Hallett, (2008).
“Ash decline assessment in emerald ash borer-infested
regions: A test of tree-level, hyper spectral technologies,”
Remote Sens. Environ., Vol. 112, No. 5, pp. 2665–2676.
[6]. K. C. Tiwari, M. K. Arora, and D. Singh, (2011). “An
assessment of independent component analysis for
detection of military targets of hyper spectral images,” Int.
J. Appl. Earth Observ. Geoinf., Vol. 13, No. 5, pp. 730–740,
[7]. H. Kwon and N. M. Nasrabadi, (2005). “A kernel RXalgorithms:
A nonlinear anomaly detector in hyper
spectral imagery,” IEEE Trans. Geosci. Remote Sens., Vol.
43, No. 2, pp. 388–397, Feb.
[8]. U. Amato, A. Antoniadis, M. F. Carfora, P. Colandrea, V.
Cuomo, M. Franzese et al., (2013). “Statistical
classification in assessing PRISMA hyper spectral potential
for agricultural land use,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., Vol. 6, No. 2, pp.615–625, Apr.
[9]. A. Plaza, J. A. Benediktsson, J. W. Boardman, J.
Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M.
Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton,
and G. Trianni, (2009). “Recent advances in techniques in
hyper spectral image processing,” Remote Sens. Environ.,
Vol. 113, pp. S110–S122,
[10]. A. Plaza, J. Bioucas-Dias, A. Simic, andW. Blackwell,
Guest Eds., (2012). “Special issue on hyper spectral
image and signal processing,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., Vol. 5, No. 2, pp. 1–7,
[11]. J. Bioucas-Dias, A. Plaza, G. Camps-Valls, S. Paul, N.
M. Nasrabadi, and J. Chanussot, (2013). “Hyper spectral
remote sensing data analysis and future challenges,” IEEE
Geosci. Remote Sens. Mag., Vol. 1, No. 2, pp. 6–36, Jun.
[12]. G. Camps-Valls, D. Tuia, L. Bruzzone et al., (2014).
“Advances in hyper spectral image classification,” IEEE
Signal Process. Mag., Vol. 31, No. 1, pp. 45–54, Jan.
[13]. D. L. Donoho, (2000). “High-dimensional data
analysis: The curses and blessings of dimensionality,” in
Proc. AMS Math Challenges Lecture, pp. 1–32
[14]. V. N. Vapnik, (1995). The Nature of Statistical
Learning Theory, 2nd ed. New York, NY, USA: Springer-
Verlag, pp. 138–141.
[15]. F. Melgani and L. Bruzzone, (2004). “Classification of
hyper spectral remote sensing images by support vector
machines,” IEEE Trans. Geosci. Remote Sens., vol. 42, no.
8, pp. 1778–1790, Aug.
[16]. P. Du, K. Tan, and J. Xia, (2012). “A novel binary tree
support vector machine in hyper spectral remote sensing
image classification,” Optics Commun., Vol. 285, pp.
3054–3060, Jun.
[17]. Y. Bazi and F. Melgani, (2006). “Toward an optimal
SVM classification system in hyperspectral remote sensing
images,” IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 11,
pp. 3374–3385, Nov.