References
[1]. Adria Gimenez, Jesus Andres-Ferrer, Alfons Juan,
(2014). “Discriminative Bernoulli HMMs for Isolated
Handwritten Word Recognition”. Journal Pattern
Recognition Letters, Vol.35, pp.157–168.
[2]. A. El-Yacoubi, M. Gilloux, (1999). “An HMM-Based
Approach for Off-Line Unconstrained Handwritten Word
Modeling and Recognition”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 21, No. 8, pp.752-760.
[3]. Brijmohan Singh, Ankush Mittal, M.A. Ansari,
Debashis Ghosh, (2011). “Handwritten Devanagari Word
Recognition: A Curvelet Transform Based Approach”,
International Journal on Computer Science and
Engineering, Vol. 3, No. 4, pp.1658-1665.
[4]. Ankush Acharyya, Sandip Rakshit, Ram Sarkar,
Subhadip Basu, Mita Nasipuri, (2013). “Handwritten Word
Recognition using MLP Based Classifier: A Holistic
Approach”, IJCSI International Journal of Computer
Science Issues, Vol.10, No.2, pp. 422-427.
[5]. Mahdi Hamdani, Patrick Doetsch, Hermann Ney,
(2014). “Improvement of Context Dependent Modeling
for Arabic Handwriting Recognition”, International
Conference on Frontiers in Handwriting Recognition, pp.
494-499.
[6]. Saeed Mozaffari, Karim Faez, Volker Margner, Haikal
El-Abed, (2008). “Lexicon Reduction using Dots for Off-line
Farsi/Arabic Handwritten Word Recognition”, Journal
Pattern Recognition Letters, Vol. 29, No. 6, pp. 724–734.
[7]. M. Blumenstein, C. K. Cheng and X. Y. Liu, (2002).
“New preprocessing Techniques for Handwritten Word
Recognition”, Proceedings of the Second IASTED.
[8]. Yaregal Assabie, Josef Bigun, (2011). “Offline
Handwritten Amharic Word Recognition”, Pattern
Recognition Letters, Vol.32, pp.1089–1099.
[9]. Ahlam Maqqor, Akram Halli, and Khaled Satori,
(2013). “A Multi-Stream HMM Approach to Offline
Handwritten Arabic Word Recognition”, International
Journal on Natural Language Computing (IJNLC), Vol. 2,
No.4, pp.21-33.
[10]. N. Azizi, N. Farah, M. Sellami, (2005). “Off-line
Handwritten Word Recognition using Ensemble of
Classifier Selection and Features Fusion”, Vol.14, No.2,
pp.141-150.
[11]. Dipak V. Koshti, Sharvari Govilkar, (2012).
“Segmentation of Touching Characters in Handwritten
Devanagari Script”, UACEE International Journal of
Computer Science and its Applications, Vol.2, No.2, pp.
83-87.
[12]. Rajiv Kumar and Amardeep Singh, (2011).
“Character Segmentation in Gurumukhi Handwritten Text
using Hybrid Approach”, International Journal of
Computer Theory and Engineering, Vol. 3, No. 4, pp. 499-
501.
[13]. Vikas J Dongre , Vijay H Mankar, (2011). “Devnagari
Document Segmentation using Histogram Approach”,
International Journal of Computer Science, Engineering
and Information Technology (IJCSEIT), Vol.1, No.3, pp. 46-
53.
[14]. Shuchi Kapoor and Vivek Verma, (2014).
“Fragmentation of Handwritten Touching Characters in
Devanagari Script”, International Journal of Information
Technology, Modeling and Computing (IJITMC), Vol. 2,
No. 1, pp. 11-21.
[15]. G.Vamvakas, B.Gatos, N. Stamatopoulos, and S.J.Perantonis, (2008). “A Complete Optical Character
Recognition Methodology for Historical Documents”, IAPR
Workshop on Document Analysis Systems, pp. 525 – 532.
[16]. Turk., M and A. Pentland, (1991). “Eigenfaces for
Recognition”, Journal of Cognition and Neuroscience,
Vol.3, No.1, pp. 71–86.
[17]. Wasserman P D, (1993). Advanced Methods in
Neural Computing. pp. 155–161, Van Nostrand Reinhold,
New York, USA.
[18]. T. Poggio and F. Girosi, (1990). “Networks for
Approximation and Learning”, Proceedings of the IEEE,
Vol.78, No.9, pp 1481–1497.
[19]. Donald F Specht, (1990). “Probabilistic Neural
Networks”, Journal of Neural Networks, Vol.3, No.1, pp.
109–118.