Studies on Reactive Precipitation of Sodium Chloride Crystals from Evaporative Residue of Reverse Osmosis

Boopathy R.*, Rames C Panda**, Sekharan G***
* Research Scholar, Chemical Engineering Department, CLRI, (CSIR), Chennai, India.
** Senior Scientist, Chemical Engineering Department, CLRI, (CSIR), Chennai, India.
*** HOD & DD, Environmental Technology Division, CLRI, (CSIR), Chennai, India
Periodicity:February - April'2015
DOI : https://doi.org/10.26634/jfet.10.3.3345

Abstract

Though Reverse Osmosis (RO) is a viable solution for separation in the purification and treatment of water, disposal of concentrated brine poses a problem. It is possible to recover salts for use in some other applications from the brine enriched salts. Development of reactive precipitation model for the highly soluble sodium chloride salt has been presented here. Salting-out of sodium chloride was achieved by bubbling gaseous hydrogen chloride in the evaporative residue solution. The influence on sodium chloride precipitation with respect to the hydrogen chloride purging contact time and precipitation distribution inside of the reactor was studied. Mathematical models representing changes in concentration of sodium ions in residual liquor and population balance of crystallized salt are formulated separately and are validated for the semi batch reactor. The maximum growth in size of crystal was achieved as 500 μm. Results show the way to recover soluble salts in zero liquid discharge, that may have high value and importance from environmental sustainability point.

Keywords

Precipitation, Crystallization, Sodium Chloride, Population Balance Model.

How to Cite this Article?

Boopathy, R., Panda, R. C., and Sekharan, G. (2015). Studies On Reactive Precipitation Of Sodium Chloride Crystals From Evaporative Residue Of Reverse Osmosis. i-manager’s Journal on Future Engineering and Technology ,10(3), 18-28. https://doi.org/10.26634/jfet.10.3.3345

References

[1]. M. H. I. Dore, (2005). “Forecasting the economic costs of desalination technology.” Desalination, Vol.172(3), pp.207.
[2]. K. O Agenson, J. I. Oh, and T. Urase, (2003). “Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes: Controlling parameters of process.” J. Membr. Sci. Vol.225(1-2), pp.91.
[3]. K. Kimura, G. Amy, J. E. Drewes, T. Heberer, T. U. Kim, and Y. Watanabe, (2003). “Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes.” J. Membr. Sci. Vol.227(1-2), pp.113.
[4]. R. Boussahel, S. Bouland, K. M. Moussaoui, and A. Montiel, (2000). “Removal of pesticide residues in water using the nanofiltration process.” Desalination, Vol.132(1-3), pp.205.
[5]. S. S. Chen, J. S. Taylor, L. A. Mulford, and C. D. Norris, (2004). “Influences of molecular weight, molecular size, flux, and recovery for aromatic pesticide removal by nanofiltration membranes.” Desalination, Vol.160(2), pp.103.
[6]. B. V. D. Bruggen, L. Lejon, and C. Vandecasteele, Reuse, (2003). “Treatment, and discharge of the concentrate of pressure-driven membrane processes.” Environ. Sci.Technol. Vol.37(17), pp.3733.
[7]. I. C. Escobar, E. M. Hoek, C. J. Gabelich, F. A. DiGiano, Y. A. Le Goullec, P. Berube, and K. J. Howe, (2005). “Committee report: Recent advances and research needs in membrane fouling.” J. Amer. Wat. W Asso. Vol.97(8), pp.79.
[8]. M. Ahmed, W. H. Shayya, D. Hoey, A. Mahendran, R. Morris, and J. Al Handaly, (2000). “Brine disposal from reverse osmosis desalination plants in Oman and the United Arab Emirates.” Desalination, Vol.130(2), pp.155.
[9]. E. Drioli, E. Curcio, A. Criscuoli, G. D. Profio, (2004). “Integrated system for recovery of CaCO3, NaCl, and MgSO4•7H2O from nanofiltration retentate,” J. Membr. Sci. Vol.239, pp.27.
[10]. Y. Tanaka, R. Ehara, S. Itoi, and T. Goto, (2003). “Ionexchange membrane electrodialytic salt production using brine discharged from a reverse osmosis seawater desalination plant.” J. Membr. Sci, Vol.222(1-2), pp.71.
[11]. M. Ahmed, A. Arakel, D. Hoey, M. R. Thumarukudy, M. F. A. Goosen, M. Al-Haddabi, and A. Al-Belushi, (2003). “Feasibility of salt production from inland RO desalination plant reject brine: A case study.” Desalination, Vol.158(1-3), pp.109.
[12]. A. Scrutton and P. A. M. Grootscholten, (1981). “A Study on the Dissolution and Growth of Sodium Chloride.” Crystals, Trans. Inst. Chem. Eng. Vol.59, pp.238.
[13]. J. Ulrich, H. Mohameed, S. B. Zhang, and J. J. Yuan, (1997). “Influence of the pH-value on the growth and dissolution rate of potassium Chloride.” Bull. Soc. Sea Water Sci. Jpn. Vol.51, pp.73.
[14]. N. Kubota, H. Otosaka, N. Doki, M. Yokota, and A. Sato, (2000). “Effect of lead(II) impurity on the growth of sodium chloride crystals.” J. Cryst. Growth, Vol.220, pp.135.
[15]. S. Al-Jibbouri and J. Ulrich, (2001). “The Influence of Impurities on Crystallization Kinetics of Sodium Chloride.” Cryst. Res. Technol. Vol.36, pp.1365.
[16]. S. Al-Jibbouri and J. Ulrich, (2002). “The growth and dissolution of sodium chloride in a fluidized bed crystallizer.” J. Cryst. Growth, Vol.234, pp.237.
[17]. N. Doki, N. Kubota, M. Yokota, S. Kimura, and S. Sasaki, (2002). “Production of sodium chloride crystals of uni-modal size distribution by batch dilution crystallization.” J. Chem. Eng. Jpn. Vol.35, pp.1099.
[18]. S.B. Zhangj, J. Yuan, H. A. Mohameed, J. Ulric, (1996). “The Effect of Different Inorganic Saltson the Growth Rate of NaCl Crystallized from Sea Water,” Crys. Res. Technol. Vol.31, pp.19.
[19]. Y. zhang and R. dawe, (1998). “The kinetics of calcite precipitation from a high salinity water.” App. Geochem., Vol.13, pp.177.
[20]. N.S. Tavare, (1987). “Simulation of Oswald ripening in a reactive batch crystalliser,” AIChE J, Vol.33(1), pp.152- 156.
[21]. D. Seifert, (1979). “Untersuchung der Kristallisation von Kaliumchlorid aus wässeriger Lösungen.” VDIForschungsheft 591, VDI-verlag, Dusseldorf
[22]. H. Langer, Zum stofftransport beim kristallwachstum aus Lousungen, (1985). Ph.D. thesis, RWTH Aachen, Aachen.
[23]. Zare Nezhad, B., (2007). “Simulation of reactive precipitation processes using the network-of-zone models,” Kor J Chem Eng., Vol.24(6), pp.942-46.
[24]. Hawkins Christopher, Luiza Angheluta, and Bjørn Jamtveit, (2014). “Hydrodynamic shadowing effect during precipitation of dendrites in channel flow,” Phys. Rev. E, Vol.89, 022402.
[25]. Juan P. Nogues, Jeffrey P. Fitts, Michael A. Celia and Catherine A. Peters, (2013). “Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks,” Wat Resources Res., Vol.49(9), pp.6006-21.
[26]. Johannes Kastner, Norbert Kockmann & Peter Woias, (2009). “Convective Mixing and Reactive Precipitation of Barium Sulfate in Microchannels,” Heat Transfer Engineering, Vol. 30(1-2), pp.148-57.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.