References
[1] G. E. Moore, (1965). "Cramming more components into integrated circuits," Electronics, Vol. 38, No. 8.
[2] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R.
Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M.
Kelleher, B. McCarthy, and R. Murphy, (2010). "Nanowire
Transistors without junctions," Nature Nanotechnology,
Vol. 5, No. 3, pp. 225–229.
[3]. Yong-Bin-Kim, (2009). "Review paper: Challenges for
Nan scale MOSFET and Emerging Nanoelectronics," Trans.
Electr. Electron. Mate, Vol.10, No.1, pp.23-40.
[4]. M.K Anvarifard, S. Member, and A.Orouji, (2013).
"Improvement of Electrical properties in a novel Partially
Depleted SOI MOSFET With Emphasizing on the Hysteresis
Effect, "IEEE Trans. Electron Devices, Vol.60, No.10,
pp.3310-3317.
[5]. Qiang Chen; Jung-Suk Goo; Ly, T.; Chandrasekaran,
K.; Zhi-Yuan Wu; Thuruthiyil, C.; Icel, A. B., (2008). "Offstate
leakage current modeling in low-power/highperformance
partially-depleted (PD) floating-body (FB)
SOI MOSFETs," Solid-State and Integrated-Circuit
th Technology, ICSICT 2008: 9 International Conference
on, ISBN: 978-1-4244-2185-5., pp.301-304, 20-23.
[6]. Wei, L.; Chen, Z.; Roy, K., (1998). "Design and
optimization of double-gate SOI MOSFETs for low voltage
low power circuits," SOI Conference, Proceedings IEEE
International, pp.69-70.
[7]. J. Chen, J. Luo, Q. Wu, Z. Chai, T. Yu, Y. Dong, and X.
Wang, (2011). "A Tunnel Diode Body Contact Structure to
Suppress the Floating-Body Effect in Partially Depleted SOI
MOSFET," IEEE Electron Device Lett, Vol. 32, No. 10, pp.
1346-1348.
[8]. J. P. Colinge, (1991). "Silicon-on-Insulator Technology:
Materials to VLSI”. Amsterdam, The Netherlands: Kluwer.
[9]. N. Sugii, (2011). "Road to Vmin=0.4v LSIs with leastvariability
FDSOI and back-bias control," in Proc. IEEE SOI
Conf., Oct., pp. 1–19.
[10]. K. K. Young, (1989). "Short-channel effects in fully
depleted SOI MOSFETs," IEEE Trans. Electron Devices, vol.
36, pp. 399–402.
[11]. J. P. Colinge, (1986). "Sub threshold slope of thin-film
SOI MOSFET's," IEEE Electron Device Lett., Vol. 7, No. 4, pp. 244–246, Apr.
[12]. J. P. Colinge, (2004). Silicon- on-Insulator
Technology: Materials to VLSI, 2nd ed. Boston, MA, USA:
Kluwer.
[13] A. Khakifirooz, K. Cheng, A. Reznicek, T. Adam,
N.Loubet, H.He, et al., (2012). "Scalability of extremely thin
SOI (ETSOI) MOSFETs to sub-20-nm gate length," IEEE
Electron Device Lett., Vol. 33, No. 2, pp. 149–151.
[14]. M. B. Kleiner, S. A. Kuhn, and W. Weber, (1996).
"Thermal conductivity measurements of thin silicon
dioxide films in integrated circuits," IEEE Trans. Electron
Devices, Vol. 43, No. 9, pp. 1602–1609.
[15]. M. Jagadesh Kumar and A. A. Orouji, (2006).
"Investigation of a new modified source/drain for
diminished self-heating effects in nanoscale MOSFETs
using computer simulation," Phys. E, Low-Dimensional
Syst. Nanostruct., Vol. 33, No. 1, pp. 134–138.
[16]. K. Kajiwara, Y. Nakajima, T. Hanajiri, T. Toyabe, and T.
Sugano, (2008). "Characterization of distribution of trap
states in silicon-on-insulator layers by front-gate
characteristics in n-channel SOI MOSFETs," IEEE Trans.
Electron Devices, Vol. 55, No. 7, pp. 1702–1707.
[17]. Y. Nakajima, Y. Watanabe, T. Hanajiri, T. Toyabe, and
T. Sugano, (2011). "Local-stress-induced trap states in SOI
layers with different levels of roughness at SOI/BOX
interfaces," IEEE Electron Device Lett., Vol. 32, No. 3, pp.
237–239.
[18]. T. Hanajiri, T. Toyabe, and T. Sugano, (2001).
"Suppression of short channel effects by full inversion in
deep sub-micron gate SOI MOSFETs," Solid- State
Electron." Vol. 45, No. 12, pp. 2077–2081.
[19]. W.-Y. Lu and Y. Taur, (2006). "On the scaling limit of
ultrathin SOI MOSFETs," IEEE Trans. Electron Devices, Vol.
53, No. 5, pp. 1137–1141.
[20]. T.Tsuchiya, Y. Sato, and M. Tomizawa, (1998). "Three
mechanisms determining short-channel effects in fully
depleted SOI MOSFETs," IEEE Trans. Electron Devices, Vol.
45, pp. 1116–1121.
[21] K. Cheng, A. Khakifirooz, P. Kulkarni, S. Ponoth, B. Haran, A. Kumar, T. Adam, A. Reznicek, N. Loubet, H. He, J. Kuss, M. Wang, T. M. Levin, F. Monsieur, Q. Liu, R. Sreenivasan, J. Cai, A. Kimball, S. Mehta, S. Luning, Y. Zhu, Z. Zhu, T. Yamamoto, A. Bryant, C.-H. Lin, S. Naczas, H. Jagannathan, L. F. Edge, S. Allegret-Maret, A. Dube,S. Kanakasabapathy, S. Schmitz, A. Inada, S. Seo, M. Raymond, Z. Zhang, A. Yagishita, J. Demarest, J. Li, M. Hopstaken, N. Berliner, A. Upham, R. Johnson, S. Holmes, T. Standaert, M. Smalley, N. Zamdmer, Z. Ren, T. Wu, H. Bu, V. Paruchuri, D. Sadana, V. Narayanan, W. Haensch, J. O'Neill, T. Hook, M. Khare, and B. Doris, (2011). "ETSOI CMOS for system-on chip applications featuring 22nm gate length, sub-100 nm gate pitch, and 0.08 um2 SRAM cell," in VLSI Symp. Tech. Dig., pp. 128–129.
[22]. O. Faynot, F. Andrieu, O. Weber, C. Fenouillet- Béranger, P. Perreau, J. Mazurier, T. Benoist, O. Rozeau, T. Poiroux, M. Vinet, L. Grenouillet, J.-P. Noel, N. Posseme, S. Barnola, F. Martin, C. Lapeyre, M. Cassé, X. Garros, M.-A. Jaud, O. Thomas, G. Cibrario, L. Tosti, L. Brévard, C. Tabone, P. Gaud, S. Barraud, T. Ernst, and S. Deleonibus, (2010). "Planar fully depleted SOI technology: A powerful architecture for the 20 nm node and beyond," in IEDM Tech. Dig., pp. 3.2.1–3.2.4.
[23]. K. Nishinohara, N. Shygyo, and T.Wada, (1992). "Effects of microscopic fluctuations in dopant distributions on MOSFET threshold voltage," IEEE Trans. Electron Devices, Vol. 39, No. 3, pp. 634–639.
[24]. P. A. Stolk, F. P. Widdershoven, and D. B. M. Klaassen, (1998). "Modeling statistical dopant fluctuations in MOS transistors," IEEE Trans. Electron Devices, Vol. 45, No. 9, pp. 1960–1971.
[25]. Q. Liu, A. Yagashita, N. Loubet, A. Khakifirooz, P. Kulkarni, T. Yamamoto, K. Cheng, M. Fujiwara, J. Cai, D. Dorman, S. Mehta, P. Khare, K. Yako, Y. Zhu, S. Mignot, S. Kanakasabapathy, S. Monfray, F. Boeuf, C. Koburger, H. Sunamura, S. Ponoth, A. Reznicek, B. Haran, A. Upham, R. Johnson, L. F. Edge, J. Kuss, T. Levin, N. Berliner, E. Leobandung, T. Skotnicki, M. Hane, H. Bu, K. Ishimaru,W. Kleemeier, M.Takayanagi, B. Doris, and R. Sampson, (2010). "Ultra-thin-body and BOX (UTBB) fully depleted (FD) device integration for 22 nm node and beyond," in VLSI Symp. Tech. Dig., pp. 61–62.
[26]. D. Suh and J. G. Fossum, (1995). "A physical chargebased model for non fully depleted SOI MOSFETs and its use in assessing floating-body effects in SOI CMOS circuits," IEEE Trans. Electron Devices, Vol. 42, pp. 728–737.
[27]. Y.-H. Koh et al., (1997). "1 Giga bit SOI DRAM with fully bulk compatible process and body-contacted SOI MOSFET structure," in IEEE IEDM Tech. Dig., pp. 579–582.
[28]. J. R. Brews, (1978). "A charge-sheet model of the MOSFET," Solid State Electron., Vol. 21, pp. 345,
[29]. H.S. Wong and Y. Taur. (1993). "Three-dimensional atomistic simulation of discrete microscopic random dopant distributions effects in sub-0.1 um NMOSFETs," in IEDM Tech. Dig., pp. 705–708.
[30]. Y. K. Choi, K. Asano, N. Lindert, V. Subramanium, T.J. King, J. Bokor, and C. Hu, (2000). "Ultrathin-body SOI MOSFET for deep-sub-tenth micron era," IEEE Electron Device Lett., Vol. 21, pp. 254–256, May
[31]. J.Kedzierski, M. Ieong, P. Xuan, J. Bokor, T. J. King, and C. Hu, (2001). "Design analysis of thin-body silicide source/drain devices," in Proc. IEEE Int. SOI Conf., pp. 21–22.
[32]. A. Vandoorem et al., (2002). "Scaling assessment of fully depleted SOI technology at the 30 nm gate length generation," in Proc. IEEE Int. SOI Conf., , pp. 25–27.
[33]. T. Ernst and S. Cristoloveanu, (2011). "The groundplane concept for the reduction of short-channel effects in fully depleted SOI devices," Elec-trochem. Soc. Proc., pp. 329–334.
[34]. B. W. Min, L. Kang, D.Wu, D. Caffo, J. Hayden, and M. A. Mendicino, (2002). "Reduction of hysteretic propagation delay with less performance degradation by novel body contact in PD SOI application," in Proc. IEEE Int. SOI Conf., pp. 169–170.
[35]. W. Chieh-Lin, Y. Chikuang, H. Shichijo, and K. O. Kenneth, (2011). "I-gate body-tied silicon-on-insulator MOSFETs with improved high-frequency performance," IEEE Electron Device Lett, Vol. 32, No. 4, pp. 443–445.
[36]. K. Yo-Hwan, C. Jin-Hyeok, N. Myung-Hee, and Y. Ji- Woon, (1997). "Body contact SOI MOSFET structure with fully bulk CMOS compatible layout and process," IEEE Electron Device Lett., Vol. 18, No. 3, pp. 102–104.
[37]. A. Daghighi, M. Osman, and M. Imam, (2008). "An area efficient body contact for low and high voltage SOI MOSFET devices," Solid State Electron., Vol. 52, No. 2, pp. 196–204.
[38]. K.Lu, J.Chen, Xi Wang, (2014). "Improvement of RF Performance by Using Tunnel Diode Body Contact Structure in PD SOI MOSFET, "IEEE Electron device Lett, Vol.35, No.1.
[39]. J.Luo, Zan Chai,Yan Yang, and S.Member, (2014). "Total Dose Effect in Tunnel-Diode Body Contact SOI NMOSFETs, "IEEE Trans. on Nuclear Science, Vol.61, No.6.
[40]. M.K Anvarifard, S.Member, and A.Orouji, (2014). "Enhanced Critical Electrical Characteristics in a Nanoscale Low Voltage SOI MOSFET with Dual Tunnel Diode, "IEEE Trans. on Electron Device.