Review On SOI MOSFET For Low Power Digital Application

Nitu Rao*, VimalKumar Mishra**, R. K. Chauhan***
* PG Scholar, Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, UP, India.
** Research Scholar, Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology,UP, India.
*** Professor, Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, UP, India
Periodicity:September - November'2014
DOI : https://doi.org/10.26634/jele.5.1.3317

Abstract

Several Metal Oxide Semiconductor (MOS) structures are discussed in this paper namely Silicon on Insulator (SOI) MOSFET, Partially Depleted (PD) SOI MOSFET, Fully Depleted (FD) SOI MOSFET and tunnel diode body contact MOSFET. SOI MOSFET has certain advantages over conventional bulk MOSFET in terms of reduced short channel effect and drain induced barrier lowering. But SOI MOSFET has certain problems due to its buried oxide layer. So the comparative study of different SOI MOSFET over bulk MOSFET has been taken. To overcome the problem of Floating Body Effect and high series resistance different structures of FD SOI MOSFET are explained in brief. A Tunnel Diode Body Contact SOI MOSFET is also studied in this paper to overcome the problem of Floating Body Effect in PD SOI MOSFET.

Keywords

SOI MOSFET (Silicon on Insulator Oxide Semiconductor Field Effect Transistor), FD SOI (Fully Depleted SOI MOSFET) MOSFET TDBC (Tunnel Diode Body Contact) MOSFET, Short Channel Effect, Floating Body Effect.

How to Cite this Article?

Rao, N., Mishra, V.K., and Chauhan, R.K. (2014). Review On SOI MOSFET For Low Power Digital Application. i-manager’s Journal on Electronics Engineering, 5(1), 6-12. https://doi.org/10.26634/jele.5.1.3317

References

[1] G. E. Moore, (1965). "Cramming more components into integrated circuits," Electronics, Vol. 38, No. 8.
[2] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, and R. Murphy, (2010). "Nanowire Transistors without junctions," Nature Nanotechnology, Vol. 5, No. 3, pp. 225–229.
[3]. Yong-Bin-Kim, (2009). "Review paper: Challenges for Nan scale MOSFET and Emerging Nanoelectronics," Trans. Electr. Electron. Mate, Vol.10, No.1, pp.23-40.
[4]. M.K Anvarifard, S. Member, and A.Orouji, (2013). "Improvement of Electrical properties in a novel Partially Depleted SOI MOSFET With Emphasizing on the Hysteresis Effect, "IEEE Trans. Electron Devices, Vol.60, No.10, pp.3310-3317.
[5]. Qiang Chen; Jung-Suk Goo; Ly, T.; Chandrasekaran, K.; Zhi-Yuan Wu; Thuruthiyil, C.; Icel, A. B., (2008). "Offstate leakage current modeling in low-power/highperformance partially-depleted (PD) floating-body (FB) SOI MOSFETs," Solid-State and Integrated-Circuit th Technology, ICSICT 2008: 9 International Conference on, ISBN: 978-1-4244-2185-5., pp.301-304, 20-23.
[6]. Wei, L.; Chen, Z.; Roy, K., (1998). "Design and optimization of double-gate SOI MOSFETs for low voltage low power circuits," SOI Conference, Proceedings IEEE International, pp.69-70.
[7]. J. Chen, J. Luo, Q. Wu, Z. Chai, T. Yu, Y. Dong, and X. Wang, (2011). "A Tunnel Diode Body Contact Structure to Suppress the Floating-Body Effect in Partially Depleted SOI MOSFET," IEEE Electron Device Lett, Vol. 32, No. 10, pp. 1346-1348.
[8]. J. P. Colinge, (1991). "Silicon-on-Insulator Technology: Materials to VLSI”. Amsterdam, The Netherlands: Kluwer.
[9]. N. Sugii, (2011). "Road to Vmin=0.4v LSIs with leastvariability FDSOI and back-bias control," in Proc. IEEE SOI Conf., Oct., pp. 1–19.
[10]. K. K. Young, (1989). "Short-channel effects in fully depleted SOI MOSFETs," IEEE Trans. Electron Devices, vol. 36, pp. 399–402.
[11]. J. P. Colinge, (1986). "Sub threshold slope of thin-film SOI MOSFET's," IEEE Electron Device Lett., Vol. 7, No. 4, pp. 244–246, Apr.
[12]. J. P. Colinge, (2004). Silicon- on-Insulator Technology: Materials to VLSI, 2nd ed. Boston, MA, USA: Kluwer.
[13] A. Khakifirooz, K. Cheng, A. Reznicek, T. Adam, N.Loubet, H.He, et al., (2012). "Scalability of extremely thin SOI (ETSOI) MOSFETs to sub-20-nm gate length," IEEE Electron Device Lett., Vol. 33, No. 2, pp. 149–151.
[14]. M. B. Kleiner, S. A. Kuhn, and W. Weber, (1996). "Thermal conductivity measurements of thin silicon dioxide films in integrated circuits," IEEE Trans. Electron Devices, Vol. 43, No. 9, pp. 1602–1609.
[15]. M. Jagadesh Kumar and A. A. Orouji, (2006). "Investigation of a new modified source/drain for diminished self-heating effects in nanoscale MOSFETs using computer simulation," Phys. E, Low-Dimensional Syst. Nanostruct., Vol. 33, No. 1, pp. 134–138.
[16]. K. Kajiwara, Y. Nakajima, T. Hanajiri, T. Toyabe, and T. Sugano, (2008). "Characterization of distribution of trap states in silicon-on-insulator layers by front-gate characteristics in n-channel SOI MOSFETs," IEEE Trans. Electron Devices, Vol. 55, No. 7, pp. 1702–1707.
[17]. Y. Nakajima, Y. Watanabe, T. Hanajiri, T. Toyabe, and T. Sugano, (2011). "Local-stress-induced trap states in SOI layers with different levels of roughness at SOI/BOX interfaces," IEEE Electron Device Lett., Vol. 32, No. 3, pp. 237–239.
[18]. T. Hanajiri, T. Toyabe, and T. Sugano, (2001). "Suppression of short channel effects by full inversion in deep sub-micron gate SOI MOSFETs," Solid- State Electron." Vol. 45, No. 12, pp. 2077–2081.
[19]. W.-Y. Lu and Y. Taur, (2006). "On the scaling limit of ultrathin SOI MOSFETs," IEEE Trans. Electron Devices, Vol. 53, No. 5, pp. 1137–1141.
[20]. T.Tsuchiya, Y. Sato, and M. Tomizawa, (1998). "Three mechanisms determining short-channel effects in fully depleted SOI MOSFETs," IEEE Trans. Electron Devices, Vol. 45, pp. 1116–1121.
[21] K. Cheng, A. Khakifirooz, P. Kulkarni, S. Ponoth, B. Haran, A. Kumar, T. Adam, A. Reznicek, N. Loubet, H. He, J. Kuss, M. Wang, T. M. Levin, F. Monsieur, Q. Liu, R. Sreenivasan, J. Cai, A. Kimball, S. Mehta, S. Luning, Y. Zhu, Z. Zhu, T. Yamamoto, A. Bryant, C.-H. Lin, S. Naczas, H. Jagannathan, L. F. Edge, S. Allegret-Maret, A. Dube,S. Kanakasabapathy, S. Schmitz, A. Inada, S. Seo, M. Raymond, Z. Zhang, A. Yagishita, J. Demarest, J. Li, M. Hopstaken, N. Berliner, A. Upham, R. Johnson, S. Holmes, T. Standaert, M. Smalley, N. Zamdmer, Z. Ren, T. Wu, H. Bu, V. Paruchuri, D. Sadana, V. Narayanan, W. Haensch, J. O'Neill, T. Hook, M. Khare, and B. Doris, (2011). "ETSOI CMOS for system-on chip applications featuring 22nm gate length, sub-100 nm gate pitch, and 0.08 um2 SRAM cell," in VLSI Symp. Tech. Dig., pp. 128–129.
[22]. O. Faynot, F. Andrieu, O. Weber, C. Fenouillet- Béranger, P. Perreau, J. Mazurier, T. Benoist, O. Rozeau, T. Poiroux, M. Vinet, L. Grenouillet, J.-P. Noel, N. Posseme, S. Barnola, F. Martin, C. Lapeyre, M. Cassé, X. Garros, M.-A. Jaud, O. Thomas, G. Cibrario, L. Tosti, L. Brévard, C. Tabone, P. Gaud, S. Barraud, T. Ernst, and S. Deleonibus, (2010). "Planar fully depleted SOI technology: A powerful architecture for the 20 nm node and beyond," in IEDM Tech. Dig., pp. 3.2.1–3.2.4.
[23]. K. Nishinohara, N. Shygyo, and T.Wada, (1992). "Effects of microscopic fluctuations in dopant distributions on MOSFET threshold voltage," IEEE Trans. Electron Devices, Vol. 39, No. 3, pp. 634–639.
[24]. P. A. Stolk, F. P. Widdershoven, and D. B. M. Klaassen, (1998). "Modeling statistical dopant fluctuations in MOS transistors," IEEE Trans. Electron Devices, Vol. 45, No. 9, pp. 1960–1971.
[25]. Q. Liu, A. Yagashita, N. Loubet, A. Khakifirooz, P. Kulkarni, T. Yamamoto, K. Cheng, M. Fujiwara, J. Cai, D. Dorman, S. Mehta, P. Khare, K. Yako, Y. Zhu, S. Mignot, S. Kanakasabapathy, S. Monfray, F. Boeuf, C. Koburger, H. Sunamura, S. Ponoth, A. Reznicek, B. Haran, A. Upham, R. Johnson, L. F. Edge, J. Kuss, T. Levin, N. Berliner, E. Leobandung, T. Skotnicki, M. Hane, H. Bu, K. Ishimaru,W. Kleemeier, M.Takayanagi, B. Doris, and R. Sampson, (2010). "Ultra-thin-body and BOX (UTBB) fully depleted (FD) device integration for 22 nm node and beyond," in VLSI Symp. Tech. Dig., pp. 61–62.
[26]. D. Suh and J. G. Fossum, (1995). "A physical chargebased model for non fully depleted SOI MOSFETs and its use in assessing floating-body effects in SOI CMOS circuits," IEEE Trans. Electron Devices, Vol. 42, pp. 728–737.
[27]. Y.-H. Koh et al., (1997). "1 Giga bit SOI DRAM with fully bulk compatible process and body-contacted SOI MOSFET structure," in IEEE IEDM Tech. Dig., pp. 579–582.
[28]. J. R. Brews, (1978). "A charge-sheet model of the MOSFET," Solid State Electron., Vol. 21, pp. 345,
[29]. H.S. Wong and Y. Taur. (1993). "Three-dimensional atomistic simulation of discrete microscopic random dopant distributions effects in sub-0.1 um NMOSFETs," in IEDM Tech. Dig., pp. 705–708.
[30]. Y. K. Choi, K. Asano, N. Lindert, V. Subramanium, T.J. King, J. Bokor, and C. Hu, (2000). "Ultrathin-body SOI MOSFET for deep-sub-tenth micron era," IEEE Electron Device Lett., Vol. 21, pp. 254–256, May
[31]. J.Kedzierski, M. Ieong, P. Xuan, J. Bokor, T. J. King, and C. Hu, (2001). "Design analysis of thin-body silicide source/drain devices," in Proc. IEEE Int. SOI Conf., pp. 21–22.
[32]. A. Vandoorem et al., (2002). "Scaling assessment of fully depleted SOI technology at the 30 nm gate length generation," in Proc. IEEE Int. SOI Conf., , pp. 25–27.
[33]. T. Ernst and S. Cristoloveanu, (2011). "The groundplane concept for the reduction of short-channel effects in fully depleted SOI devices," Elec-trochem. Soc. Proc., pp. 329–334.
[34]. B. W. Min, L. Kang, D.Wu, D. Caffo, J. Hayden, and M. A. Mendicino, (2002). "Reduction of hysteretic propagation delay with less performance degradation by novel body contact in PD SOI application," in Proc. IEEE Int. SOI Conf., pp. 169–170.
[35]. W. Chieh-Lin, Y. Chikuang, H. Shichijo, and K. O. Kenneth, (2011). "I-gate body-tied silicon-on-insulator MOSFETs with improved high-frequency performance," IEEE Electron Device Lett, Vol. 32, No. 4, pp. 443–445.
[36]. K. Yo-Hwan, C. Jin-Hyeok, N. Myung-Hee, and Y. Ji- Woon, (1997). "Body contact SOI MOSFET structure with fully bulk CMOS compatible layout and process," IEEE Electron Device Lett., Vol. 18, No. 3, pp. 102–104.
[37]. A. Daghighi, M. Osman, and M. Imam, (2008). "An area efficient body contact for low and high voltage SOI MOSFET devices," Solid State Electron., Vol. 52, No. 2, pp. 196–204.
[38]. K.Lu, J.Chen, Xi Wang, (2014). "Improvement of RF Performance by Using Tunnel Diode Body Contact Structure in PD SOI MOSFET, "IEEE Electron device Lett, Vol.35, No.1.
[39]. J.Luo, Zan Chai,Yan Yang, and S.Member, (2014). "Total Dose Effect in Tunnel-Diode Body Contact SOI NMOSFETs, "IEEE Trans. on Nuclear Science, Vol.61, No.6.
[40]. M.K Anvarifard, S.Member, and A.Orouji, (2014). "Enhanced Critical Electrical Characteristics in a Nanoscale Low Voltage SOI MOSFET with Dual Tunnel Diode, "IEEE Trans. on Electron Device.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 15 15 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.