Dual Tree Rotated Complex Wavelets Transform with Local Binary Patterns for Texture Image Retrieval

A. Hariprasad Reddy*, N. Subhash Chandra**
* Research Scholar, Department of Computer Science and Engineering, JNTU Hyderabad, Hyderabad, Telangana, India
** Professor & Head of the Department, VBIT, Hyderabad, Telangana, India.
Periodicity:January - March'2015
DOI : https://doi.org/10.26634/jdp.3.1.3287

Abstract

In this paper, the combination of local binary patterns (LBP) and dual tree complex wavelet filters for content based image retrieval (CBIR). A new set of two-dimensional (2-D) rotated dual tree complex wavelet transform (DT-RCWT) are designed with dual tree complex wavelet filter coefficients, which gives improved texture retrieval performance. Most texture image retrieval systems are still incapable of providing retrieval result with high retrieval accuracy and less computational complexity. To address this problem, we propose a novel approach for texture image retrieval by using a set of dual-tree rotated complex wavelet filter (DT-RCWF) dual-tree-complex wavelet transform (DT-CWT) and local binary patterns (LBP) jointly, which obtains the texture features. LBP extracts the information based on distribution of point edges which are evaluated by taking into consideration of local difference between the center pixel and its neighbors in an image. To check the retrieval performance, texture database of 1856 textures is created from Brodatz album. Retrieval efficiency and accuracy using proposed features is found to be superior to other existing methods.

Keywords

Keywords- Local Binary Patterns (LBP), Dual-Tree-Complex Wavelet Transform (DT-CWT); Dual-Tree Rotated Complex Wavelet Filter (DT-RCWF).

How to Cite this Article?

Reddy,H.A., and Chandra,S.N. (2015). Dual Tree Rotated Complex Wavelets Transform with Local Binary Patterns for Texture Image Retrieval. i-manager’s Journal on Digital Signal Processing, 3(1), 22-30. https://doi.org/10.26634/jdp.3.1.3287

References

[1]. Y. Rui and T. S. Huang, (1999). Image retrieval: Current techniques, promising directions and open issues, J.. Vis. Commun. Image Represent., Vol.10, pp.39–62.
[2]. A. W.M. Smeulders, M. Worring, S. Santini, (2000). A. Gupta, and R. Jain, Content-based image retrieval at the end of the early years, IEEE Trans. Pattern Anal. Mach. Intell., Vol.22 (12), pp.1349–1380.
[3]. M. Kokare, B. N. Chatterji, P. K. Biswas, (2002). A survey on current content based image retrieval methods, IETE J. Res., Vol.48 (3&4), pp.261–271.
[4]. Ying Liu, Dengsheng Zhang, Guojun Lu, Wei-Ying Ma, (2007). A survey of content-based image retrieval with high-level semantics, Elsevier J. Pattern Recognition, Vol.40, pp.262-282.
[5]. Liu, F., Picard, R.W., (1996). Periodicity, directionality, and randomness: Wold features for image modeling and retrieval. IEEE Trans. Pattern Anal. Machine Intell., Vol.18, pp.722–733.
[6]. J. R. Smith and S. F. Chang, (1996). Automated binary texture feature sets for image retrieval, Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Columbia Univ., New York, pp.2239–2242.
[7]. A. Ahmadian, A. Mostafa, (2003). An Efficient Texture Classification Algorithm using Gabor wavelet, 25th Annual international conf. of the IEEE EMBS, Cancun, Mexico, pp.930-933.M.
[8]. M. N. Do and M. Vetterli, (2005). “The contourlet transform: An efficient directional multi-resolution image representation,” IEEE Trans. Image Process., Vol. 14, No. 12, pp. 2091–2106.
[9]. M. Unser, (1993). Texture classification by wavelet packet signatures, IEEE Trans. Pattern Anal. Mach. Intell., Vol.15 (11), pp. 1186-1191.
[10]. B. S. Manjunath and W. Y. Ma, (1996). Texture Features for Browsing and Retrieval of Image Data, IEEE Trans. Pattern Anal. Mach. Intell., Vol.18 (8), pp.837-842.
[11]. M. Kokare, P. K. Biswas, B. N. Chatterji, (2007). Texture image retrieval using rotated Wavelet Filters, Elsevier J. Pattern recognition letters, Vol.28, pp.1240-1249.
[12] M. Kokare, P. K. Biswas, B. N. Chatterji, (2005). Texture Image Retrieval Using New Rotated Complex Wavelet Filters, IEEE Trans. Systems, Man, and Cybernetics, Vol.33 (6), pp.1168-1178.
[13]. M. Kokare, P. K. Biswas, B. N. Chatterji, (2006). Rotation-Invariant Texture Image Retrieval Using Rotated Complex Wavelet Filters, IEEE Trans. Systems, Man, and Cybernetics, Vol.36 (6), pp.1273-1282.
[14]. L. Birgale, M. Kokare, D. Doye, (2006). Color and Texture Features for Content Based Image Retrieval, International Conf. Computer Grafics, Image and Visualisation, Washington, DC, USA, pp.146 – 149.
[15]. Subrahmanyam, A. B. Gonde and R. P. Maheshwari, (2009). Color and Texture Features for Image Indexing and Retrieval, IEEE Int. Advance Computing Conf., Patial, India, pp.1411-1416.
[16]. Manesh Kokare, P.K. Biswas, B.N. Chatterji, (2004). Cosine-modulated wavelet based texture features for content-based image retrieval, Pattern Recognition Letters, Vol.25, pp. 391–398.
[17] R.A. Gopinath, and C.S. Burrus, (1992). Wavelets and filter banks, in: C.K. Chui (Ed.), wavelets: A tutorial in theory and applications, Academic Press, San Diego, CA., pp.603-654.
[18]. Hsin, H.C., (2000). Texture segmentation using modulated wavelet transform. IEEE Trans. Image Process. Vol.9 (7), pp.1299–1302.
[19]. Guillemot, C., Onno, P., (1994). Cosine-modulated wavelets: New results on design of arbitrary length filters and optimization for image compression. In: Proc. Internat. Conf. on Image Processing 1, Austin, TX, USA, pp. 820–824.
[20]. T. Ojala, M. Pietikainen, D. Harwood, (1996). A comparative sudy of texture measures with classification based on feature distributions, Elsevier J. Pattern Recognition, Vol.29 (1), pp.51-59.
[21]. T. Ojala, M. Pietikainen, T. Maenpaa, (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., Vol.24 (7), pp.971-987.
[22]. M. Pietikainen, T. Ojala, T. Scruggs, K. W. Bowyer, C. Jin, K. Hoffman, J. Marques, M. Jacsik, W. Worek, (2000). Overview of the face recognition using feature distributions, Elsevier J. Pattern Recognition, Vol.33 (1), pp.43-52.
[23] T. Ahonen, A. Hadid, M. Pietikainen, (2006). Face description with local binary patterns: Applications to face recognition, IEEE Trans. Pattern Anal. Mach. Intell., Vol.28 (12), pp.2037-2041.
[24]. G. Zhao, M. Pietikainen, (2007). Dynamic texture recognition using local binary patterns with an application to facial expressions, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 29 (6), pp.915-928.
[25] M. Heikkil;a, M. Pietikainen, (2006). A texture based method for modeling the background and detecting moving objects, IEEE Trans. Pattern Anal. Mach. Intell., Vol.28 (4), pp.657-662.
[26]. X. Huang, S. Z. Li, Y. Wang, (2004). Shape localization based on statistical method using extended local binary patterns, Proc. Inter. Conf. Image and Graphics, pp.184- 187.
[27]. M. Heikkila, M. Pietikainen, C. Schmid, (2009). Description of interest regions with local binary patterns, Elsevie J. Pattern recognition, Vol.42, pp.425-436.
[28]. M. Li, R. C. Staunton, (2008). Optimum Gabor filter design and local binary patterns for texture segmentation, Elsevier J. Pattern recognition, Vol.29, pp.664-672.
[29]. B. Zhang, Y. Gao, S. Zhao, J. Liu, (2010). Local derivative pattern versus local binary pattern: Face recognition with higher-order local pattern descriptor, IEEE Trans. Image Proc., Vol.19 (2), pp.533-544.
[30]. N. G. Kingsbury, (1999). “Image processing with complex wavelet,” Phil. Trans. Roy. Soc. London A, Vol. 357, pp. 2543–2560.
[31]. P. Brodatz, (1996). “Textures: A Photographic Album for Artists and Designers,” New York: Dover.
[32]. University of Suthern California, Signal and Image Processing Institute, Rotated Textures. [Online]. Available: http://sipi.usc.edu/database/.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.