References
[1]. Hang Zhang, Wei Zhang and John Lach, (2014). “A
Low-Power Accuracy Configurable Floating Point
Multiplier”, Electrical and Computer Engineering, IEEE,
pp.48-54.
[2]. Goldberg, David (1991). "What Every Computer
Scientist Should Know about Floating-Point Arithmetic",
(http:/ / docs. Sun. com/ source/806-3568/ ncg_goldberg.
html). ACM Computing Surveys, Vol. 23, pp. 5–48,
doi:10.1145 /103162.103163. Retrieved 2010-09-02.
[3]. S.Kobayashi and G.P Fettweis, (1999). “A new
approach for block-floating-point arithmetic,” ICASSP '99. Proceedings, Vol. 4, pp.2009-2012.
[4]. Irine Padma B. T, Suchitra. K, (2014). “Pipelined Floating
Point Multiplier Based on Vedic Multiplication Technique”,
International Journal of Innovative Research in Science,
Engineering and Technology, Vol. 3, pp. 130-137.
[5]. J.N. Mitchell. (1962). ”Computer multiplication and
division using binary logarithms”, IRE Transaction on
Electronic Computers, pp. 512-517.
[6]. Gokul Govindu, Ling Zhuo, Seonil Choi, Viktor K.
Prasanna, (2004). "Analysis of High Performance Floating-
Point Arithmetic on FPGAs", IPDPS 2004, Santa Fe, New
Mexico, USA.
[7]. Jaenicke and W. Luk, (2011). "Parameterized Floating-
Point Arithmetic on FPGAs", Proc. of IEEE ICASSP, Vol. 2, pp.
897-900.
[8]. Burgess N., Knowles S., (1999). “Efficient implementation
of rounding units”, Signals, Systems, and Computers,
Conference Record of the Thirty-Third Asilomar Conference,
Vol.2, pp. 1489 - 1493.
[9]. M. Schmookler and D. Mikan, (1996). “Two-state
Leading Zero/One Counter (LZC)”, US Patent #5493520.
[10]. E. Hokenek and R. K. Montoye, (1990). “Leading-zero
Counter (LZC) in the IBM RISC system/6000 floating point
execution unit,” IBM J. Res. Development, Vol. 34, pp.
71–77.