Development of a Performance Evaluation Tool forHybrid Vehicles System Design

0*, Jonathan Williams**
* Senior Researcher, Faculty of Computing, Engineering and Science, University of South Wales, UK.
** CAPSE Director, University of South Wales, UK.
Periodicity:August - October'2014
DOI : https://doi.org/10.26634/jic.2.4.3246

Abstract

This paper discusses a simulation and modelling tool developed at the University of South Wales (USW). This tool has been  developed within the MATLAB/SimulinkTM platform for flexibility and functionality. It is able to deal with any dynamic behaviour and the various elements of a Hybrid Electric Vehicle (HEV) as well as the dynamics in terms of fuel usage of the vehicle. The simulation tool comprises a set of component models, which may be re-parameterized to represent different systems assembled in simulink for a particular vehicle configuration. This paper also discusses the methodology for vehicle drive train design, energy management strategies, performance analysis and controller design using the simulation tool. It can be used for control analysis, configuration setup and analysis for better energy management strategies. Design of three USW-HEVs (University of South Wales-Hybrid Electric Vehicle) is discussed to illustrate the capabilities of the simulation tool. The results shows that the simulation tool can accurately represent the dynamic behaviours of several variations of alternative car concepts.

Keywords

Modelling, Simulation Tool, Vehicle, Performance Analysis, Controller Design.

How to Cite this Article?

Thanapalan, K., and Williams, J. (2014). Development of a Performance Evaluation Tool for Hybrid Vehicles System Design. i-manager’s Journal on Instrumentation and Control Engineering, 2(4), 6-13. https://doi.org/10.26634/jic.2.4.3246

References

[1]. Adams, J., Yang, W., Oglesby, K., & Osborne, K. (2000). “The development of Fords P2000 fuel cell vehicle”, Proc. of the Society of Automotive Engineers, World Congress 2000, SAE paper No. 2000-01-1061.
[2]. Carr, S. J. W., Thanapalan, K. K. T., Zhang, F., Guwy, A. J., Maddy, J., Gusig, L.-O., & Premier, G. C. (2013). “Integration of Wind Power and Hydrogen Hybrid Electric Vehicles into Electric Grids”. In A. Hakansson, M. Höjer, R. J. Howlett, & L. C. Jain (Eds.), Sustainability in Energy and Buildings, Springer Berlin Heidelberg, pp. 261–270.
[3]. Chau, K. T., & Wong, Y. S. (2002). “Overview of power management in hybrid electric vehicles”. Energy Conversion and Management, Vol.43, No.15, pp.1953–1968.
[4]. Drolia, A., Jose, P. & Mohan, N. (2003). “An approach to connect ultracapacitor to fuel cell powered electric vehicle and emulating fuel cell electrical characteristics using switched mode converter”, In the Proc. of the 29th IEEE Int. Conf. of the Industrial Electronics Society, Vol. 1, pp.897–901.
[5]. Farrington, R., &Rugh, J.(2000). “Impact of Vehicle Air- Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range. National Renewable Energy Laboratory”, In: Earth Technologies Forum Washington, NREL/CP-540-28960
[6]. Friede, W., Rael, S. &Davat, B. (2004). “Mathematical model and characterization of the transient behaviour of a PEM fuel cell”, IEEE Trans on Power Electronics, Vol. 19, No. 5, pp.1234–1241.
[7]. Hooper, J. M., & Marco, J. (2014). “Characterising the in-vehicle vibration inputs to the high voltage battery of an electric vehicle”. Journal of Power Sources, Vol. 245, pp. 510–519.
[8]. Juraschka, H., Thanapalan, K. K. T., Gusig, L. O., & Premier, G. C. (2014). “Optimization Strategies for Combined Heat and Power Range Extended Electric Vehicles”. In S. Helber, M. Breitner, D. Rösch, C. Schön, J.-M. G. von der Schulenburg, P. Sibbertsen, A. Wolter (Eds.), Operations Research Proceedings 2012, pp. 315–320. Springer International Publishing.
[9]. Juraschka, H.(2012). “Evaluation of Battery- Electricand Serial-Hybrid-Powertrains for Road Vehicles”. Bachelor Thesis, Hochschule Hannover .
[10]. Koehler, J., Strupp, C., Lemke, N.(2009). “Klimatische Daten und Pkw - Nutzung Klima-daten und Nutzungsverhaltenzur Auslegung”, Versuch und Simulation anKraftfahrzeug-Kaelte-/Heizanlagen in Europa, USA, China und Indien. FAT- Schriftenreihe224 , Forschungsvereinigung Automobiltechnike.V., Berlin
[11]. Li, C. Y., & Liu, G. P. (2009). “Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles”. Journal of power sources, Vol.192, No.2, pp.525- 533.
[12]. Miotti, A., Domenico, A., Guezennec, Y. & Rajagopalan, S. (2005). “Control-oriented model for an automotive PEM fuel cell system with imbedded 1+1D membrane water transport”, in the Proc. of IEEE Conf. on Vehicle Power and Propulsion.
[13]. Odeim, F., Roes, J., Wülbeck, L., &Heinzel, A. (2014). “Power management optimization of fuel cell/battery hybrid vehicles with experimental validation”. Journal of Power Sources, Vol.252, pp.333–343.
[14]. Prokhorov, D. V. (2008). “Toyota Prius HEV neurocontrol and diagnostics”. Neural Networks, Vol. 21, No. 2, 3, pp. 458–465.
[15]. Parten, M. and Maxwell, T. (2001). “Development of a PEM fuel cell vehicle”, in the Proc. of IEEE Vehicular Technology Conference'01, Atlantic City, NJ
[16]. Roscher, M., Leidholdt, W., Trepte, J. (2012). “High efficiency energy management in BEV applications”. Int.J. El.Power & Energy Syst., Vol. 37, No. 1, pp. 126-130.
[17]. Thanapalan, K., Zhang, F., Premier, G., Guwy, A., &Maddy, J. (2012). “Renewable hydrogen hybrid electric vehicles and optimal energy recovery systems”. In 2012 UKACC International Conference on Control (CONTROL) pp. 935–940.
[18]. Thanapalan, K., Zhang, F., Premier, G., &Guwy, A. (2012). “Optimal power management of hydrogen fuel cell vehicles”. In the Proceedings of World Renewable Energy Forum (WREF2012), Denver, Colorado, USA.
[19]. Thanapalan, K., Williams, J. G., Premier, G. C., & Guwy, A. J. (2011). “Design and implementation of renewable hydrogen fuel cell vehicles”. Renewable Energy and Power Quality Journal, Vol. 9, No. 310, pp. 2.
[20]. Thanapalan, K. K. T., Liu, G. P., Williams, J. G., Wang, B., & Rees, D. (2009). “Review and analysis of fuel cell system modelling and control”. International Journal of Computer Aided Engineering & Technology, Vol.1, No.2, pp.145 – 157.
[21]. Thanapalan, K. K. T., Liu, G. P., Williams, J. G., & Rees, D. (2009). “Robust fuzzy controller development for a PEM fuel cell system”. International Journal of Advanced Mechatronic Systems, Vol.1, No.3, pp.223–230.
[22]. Thanapalan, K., Williams, J., Liu, G., & Rees, D. (2008). “Modelling of a PEM fuel cell system”. In the Proceedings of 17th IFAC World Congress, pp. 4636 – 4641.
[23]. Yu, Q., Srivastava, A., Choe, S. &Gao, W. (2006). “'Improved modelling and control of a PEM fuel cell power system for vehicles”, Proc. of IEEE Southeast Conf'06, pp.331–336.
[24]. Zhang, F., Thanapalan, K., Procter, A., Carr, S., Maddy, J., & Premier, G. (2013). “Power management control for off-grid solar hydrogen production and utilisation system”. International Journal of Hydrogen Energy, Vol.38, No.11, pp.4334–4341.
[25]. Zhang, J., Lu, X., Xue, J., Li, B. (2008). “Regenerative Braking System for series hybrid electric city bus”. The World Electric Vehicle Journal, Vol.2, No.4, pp.128 – 134.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 15 15 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.