References
[1]. Badrul Sarwar, George Karypis, Joseph Konstan, and
John Riedl. (2000). “Application of dimensionality
reduction in recommender system-a case study. Technical report”, DTIC Document.
[2]. Andrew I Schein, Alexandrin Popescul, Lyle H Ungar,
and David M Pennock, (2002). “Methods and metrics for
cold-start recommendations”, International ACM SIGIR
conference on Research and Development in
Information Retrieval. pp.253–260.
[3]. Ziegler, C.-N., McNee, S. M., Konstan, J. A., and
Lausen. G, (2005). “Improving recommendation lists
through topic diversification”, In Proc. of the 14th
International Conference on World Wide Web. pp.22-32.
[4]. Robert Bell Yehuda Koren and Chris Volinsky, (2009).
“Matrix factorization techniques for recommender
systems”, In IEEE Compute. Vol.42 (8), pp.30-37.
[5]. Michael J. Pazzani, (1999). “A framework for
collaborative, content-based and demographic
filtering”, Artificial Intelligence Revi., Vol.13, No (5-6),
pp.393–408.
[6]. Prem Melville, Raymond J. Mooney, and Ramadass
Nagarajan., (2002). “Content boosted collaborative
filtering for improved recommendations”, In Proceedings
of the Eighteenth National Conference on Artificial
Intelligence (AAAI-02). pp.187-192.
[7]. Shyong K. Lam and John Riedl. Shilling, (2004).
th “Recommender systems for fun and profit”, 13
International Conference on World Wide Web. pp.393-
402.
[8]. Adomavicius, G., Manouselis, N., Kwon, Y., (2011).
“Multi-criteria recommender systems”, Recommender
Systems Handbook. Springer US, pp. 769-803.
[9]. Jannach, D., Karakaya, Z., Gedikli, F., (2012).
“Accuracy improvements for multicriteria recommender
th systems”, In Proceedings of the 13 ACM Conference on
Electronic Commerce (EC 2012). pp. 674-689.
[10]. MehrbakhshNilashi, Dietmar Jannach, Othman bin
Ibrahim, Norafida Ithnin, (2015). “Clustering and
regression-based multi-criteria collaborative filtering with
incremental updates”, Inf. Sci., Vol. 293: pp.235-250.