References
[1]. J. Nagi, A. Mohammad, K. Yap, S. Tiong, and S.
Ahmed, (2008). “Non technical loss analysis for detection
of electricity theft using support vector machines,” in
nd Proceedings of the 2 IEEE International Power and
Energy Conference, pp. 907–912.
[2]. K. S. Yap, Z. Hussien, and A. Mohamad, (2007).
“Abnormalities and fraudelectric meter detection using
hybrid support vector machine and genetic algorithm,” in Proc. 3rd IASTED Int. Conf. Advances in Computer
Science and Technology, Phuket, Thailand.
[3]. Kim, M, and Kim T., (2002). "A Neural Classifier with
Fraud Density Map for Effective Credit Card Fraud
Detection", Proceedings of IDEAL., pp.378-383.
[4]. Carlos León, Félix Biscarri, Iñigo Monedero, Juan
Ignacio Guerrero, Jesús Biscarri, and Rocío Millán,
(2011). “Variability and Trend-Based Generalized Rule
Induction Model to NTL Detection in Power Companies”
IEEE Trasaction on Power system, Vol. 26(4), pp.1798-1807.
[5]. A. H. Nizar, Z. Y. Dong, J. H. Zhao, and P. Zhang, (2007).
“A Data Mining Based NTL Analysis Method”, IEEE Power
Engineering Society (PES) General Meeting, pp.1-8.
[6]. M. Kantardzic, (2003). “Data Mining: Concepts,
Models, Methods, and Algorithms”, Hoboken, NJ: Wiley-
Interscience: IEEE Press, pp.1-12.
[7]. T. B. Smith, (2004). “Electricity Theft: A Comparative Analysis”, Energy Policy, Vol.32(18), pp.2067-2076.
[8]. J. Filho, (2004). “Fraud identification in electricity
company costumers using decision tree,” in Proc.
IEEE/PES Int. Conf. Systems, Man and Cybernetics, The
Hague, The Netherlands, Vol.4.
[9]. NanlinJin, Peter Flach, Tom Wilcox, Royston Sellman,
JoshuaThumim, Arno Knobbe, (2014). “Subgroup Discovery in Smart Electricity Meter Data”, IEEE Transaction
on Industrial Informatics, Vol.10(2).
[10]. A. H. Nizar, Z. Y. Dong, M. Jalaluddin, and M. J.
Raffles, (2006). “Load Profiling Non-Technical Loss
st Activities in a Power Utility”, in Proc. of the 1 International
Power and Energy Conference (PECON), Putrajaya,
Malaysia.