References
[1]. Kutzner T., Lausitz H., Travieso C.M., and Bonninger I.
(2013). “Writer Identification on mobile device based on
handwritten”. IEEE 47th International Carnahan
Conference on Security Technique, Medellin, pp.1-5, 8-
11 doi:10.1109/ccst.2013.6922663.
[2]. Kore S. L. and Apte S. D. (2012). “The current state of art- handwriting a behavioral biometric for person
identification and verification”. ACM Digital library, pp.
925-930.
[3]. Arazi B. (1977). “Handwriting identification by means
of run-length measurements”. IEEE Trans. Systems Man
and Cybernetics., Vol. 7, No. 12, pp. 878–881.
[4]. Bulacu M. and Schomaker L. (2007). “Textindependent
writer identification and verification using
textural and allographic features”. IEEE Trans. Pattern
Analysis and Machine Intelligence, Special Issue -
Biometrics: Progress and Directions, IEEE Computer
Society, Vol. 29, No. 4 , pp. 701-717.
[5]. Schomaker L. and Bulacu M. (2004). “Automatic writer
identification using connected-component contours
and edge-based features of upper-case western script”.
IEEE Trans. Pattern Analysis and Machine Intelligence,
Vol. 26, No. 6, pp. 787-798.
[6]. Bulacu M. L. (2007). “Statistical pattern recognition for
automatic writer identification and verification”. Ph.D.
Thesis.
[7]. Siddiqi I. and Vincent N. (2009). “A set of chain code
based features for writer recognition”. 10th International
Conference on Document Analysis and Recognition (ICDAR 09), pp. 981-985.10. 1109/ICDAR.2009.136.
[8]. Zhimin Huang, Dongli Wang, and Yue Lu .( 2014).
“Writer identification using differential chain code and
grid features”. Advances in Information systems and
computing, Vol. 277, pp.647-656, 10.1007/978-3-642-
549243-64, springer.
[9]. Hong Ding, Huiqun Wu, Xiaofeng Zhang and J. Chen
.(2014). “Writer identification based on local contour
distribution feature”. Int. jrnl. Signal processing,image
processing and pattern recognition, Vol.7, No.1, pp.169-
180,doi. 10.14257/ijsip.2014.7.1.16.
[10]. Soheila S.R. and M.E. Moghaddam. (2014). “A
persian writer identification method using swarm based
feature selection approach”. Int. Jrnl. Biometrics , Vol. 6,
No. 1, pp.53-74.
[11]. Siddiqi I. and Vincent N. (2008). “Stroke width
independent feature for writer identification and
handwriting classification”. ICFHR.
[12]. Kore S.L. and Apte S .D. (2013). “Ink width
independent global features for writer verification”. IEEE
xplore, pp. 1770-1775.
[13]. Marti U. V. and Bunke H. (2002). “The IAM-Database:
An English Sentence Database for Offline Handwriting
Recognition”. Int'l J. Document Analysis and Recognition,
Vol. 5, No. 1, pp. 39-46.