References
[1]. A. A. Albert. (1948). “Power Associative Rings”, Trans. Amer. Math. Soc., Vol.64, pp.552-593.
[2]. C.T. Anderson and D. L. Outcalt. (1968). “On Simple Antiflexible Rings”, J. Algebra, Vol.10, pp.310 - 320.
[3]. A. Thedy. (1971). “On Rings satisfying ((a, b, c), d) = 0”, Proc. Amer. Math. Soc., Vol.29, pp.250–254.
[4]. A. Thedy. (1971). “On rings with commutators in nuclei”, Math. Z., Vol.119, pp.213 - 218.
[5]. A. H. Boers. (1971). “The nucleus in the associative ring”, Proc. Kon. Ned. Akad. Vanwet. Vol 74 et Indag. Math. 33, pp.464
- 470.
[6]. H. A. Celik. (1972). “On primitive and prime Antiflexible Rings”, Journal of Algebra, Vol.20, pp.428 - 440.
[7]. A. Thedy. (1975). “Right alternative rings”, Journal of Algebra, Vol.37, pp.1 - 43.
[8]. M. Mahivee. (1975). “On prime right alternative rings”, (Russian) Algebra I logika Vol.14, pp.56 - 60.
[9]. H.A. Celik and D. L. Outcalt. (1975). “Power – Associativity of Antiflexible rings”, Proceedings of the American
Mathematical Society, Vol.53(1), pp.19 - 23.
[10]. E. Kleinfeld. (1988). “Rings with (x, y, x) and commutators in the left nucleus”, Comm. Algebra, Vol.16, pp.2023-2029.
[11]. Y. Paul. (1990). “Prime rings satisfying (x, y, z) = (x, z, y)”, Proc. Symposium of Algebra and Number Theory, Kochi, Kerala,
India, pp.91-95.
[12]. Kosier. F, (1962). “On a class of nonflexible algebras”. Trans. Am. Math. Soc. Vol.102, pp.299-318.
[13]. Kleinfeld, E (1957). “Assosymmetric rings”, Proc. Amer. Math. Soc., Vol. 8, pp.983-986.