References
[1]. Choi, S. U. S. (1995). “Enhancing thermal
conductivity of fluids with nanoparticles in developments and
applications of
non-Newtonian flows,” ASME, FED-Vol. 231/MD, Vol.66, pp.99-
105.
[2]. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and
Thompson, L. J. (2001). “Anomalously increased effective thermal
conductivities of ethylene glycol-based nanofluids containing copper
nanoparticles,” Applied Physics Letter, Vol.78,
pp.718-720.
[3]. Puneet Rana and Bhargava, R. (2011). “Flow and
Heat Transfer Analysis of a Nanofluid along a Vertical Flat Plate with
Non-Uniform Heating Using Fem: Effect of Nanoparticle Diameter”,
International Journal of Applied Physics and
Mathematics, Vol. 1, No. 3, pp.171-176.
[4]. Sakiadis, B.C. (1961). “Boundary-layer
behaviour on continuous solid surfaces: Boundary-layer equations for
twodimensional
and axisymmetric flow”, AIChE J., Vol.7, pp.26-28.
[5]. Crane, L.J. (1970), “Flow past a stretching
sheet”. Z.Angew.Math. Phys, Vol.21, pp.645–647.
[6]. Gupta, P.S., and Gupta.A.S. (1977). “Heat and
mass transfer on a stretching sheet with suction or blowing”,
Canad. J.
Chem. Eng, Vol.55, pp.744-746.
[7]. Mahapatra,T.R., and Gupta.A.S. (2002). Heat transfer
in stagnation-point flow towards a stretching sheet, Heat and Mass
Transfer, Vol.38, pp.517–521.
[8]. Sohail Nadeem., and Changhoon Lee. (2012). Boundary
layer flow of nanofluid over an exponentially stretching
surface, Nanoscale Research Letters, 7:94, pp.1-6.
[9]. Alam, M.S., Rahman, M.M., and Sattar, M.A. (2008).
Effect of variable suction and thermophoresis on steady MHD
combined free-forced convective heat and mass transfer flow over a semi-
infinite permeable inclined plate in the
presence of thermal radiation, International Journal of Thermal Sciences,
Vol.47, pp.758-765.
[10]. Jyothi, P., Viswanatha Reddy, G., and Vijaya Kumar
Varma, S. (2013). Thermo diffusion and chemical reaction effects
on unsteady free mhd convection flow past a vertical porous plate in
slip-flow regime, International Journal of Advanced
Engineering Technology, pp.33-36.
[11]. Iswar Chandra Mandal, Swati Mukhopadhyay. (2013).
Heat transfer analysis for fluid flow over an exponentially
stretching porous sheet with surface heat flux in porous medium, Ain
Shams Engineering Journal, Vol. 4, pp.103-110.
[12]. Gangadhar, K., and Bhaskar Reddy, N. (2013).
Chemically Reacting MHD Boundary Layer Flow of Heat and Mass
Transfer over a Moving Vertical Plate in a Porous Medium with Suction,
Journal of Applied Fluid Mechanics, Vol. 6, No. 1, pp.
107-114.
[13]. Rushi Kumar, B., and Gangadhar, K. (2012). Heat
generation effects on mhd boundary layer flow of a moving vertical
plate with suction, Journal of Naval Architecture and Marine Engineering,
Vol.9, pp.153-162.
[14]. Bandaris Shankar, Yohannes Yirga. (2013). Unsteady
Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching
Sheet with a Non-Uniform Heat Source/Sink, World Academy of Science,
Engineering and Technology International Journal
of Mathematical, Computational Science and Engineering, Vol:7, No:12,
pp.943-951.
[15]. Liu, I.C. (2004). Flow and heat transfer of an
electrically conducting fluid of second grade over a stretching sheet
subject to a transverse magnetic field, Int J Heat Mass Transf., Vol.47,
pp.4427-4437.
[16]. Jing zhu, Liancun Zheng, Xinxin Zhang. (2010). Flow
and Heat Transfer In a Power-law Fluid with Variable Conductivity
over a Stretching Sheet, Proceedings of the World Congress on
Engineering, Vol III WCE 2010, June 30 - July 2, 2010, London, U.K.
[17]. Van Rij, J., Ameel, T., Harman, T. (2009). The
effect of viscous dissipation and rarefaction on rectangular microchannel
convective heat transfer. Int. J. Therm. Sci. 2009, Vol.48,
pp.271–281.
[18]. Koo, J., Kleinstreuer, C. (2004). Viscous
dissipation effects in microtubes and microchannels, Int. J. Heat Mass
Transf.,
Vol. 47, pp.3159-3169.
[19]. Mohammad H. Yazdi., Shahrir Abdullah., Ishak
Hashim., and Kamaruzzaman Sopian. (2011). Effects of Viscous
Dissipation on the Slip MHD Flow and Heat Transfer past a Permeable
Surface with Convective Boundary Conditions,
Energies, Vol.4, pp.2273-2294.
[20]. Khan, S.K., Subhas Abel, M., and Sonth Ravi, M.
(2003). Viscoelastic MHD flow, heat and mass transfer over a porous
stretching sheet with dissipation of energy and stress work, Int J Heat
Mass Transf., Vol.40, pp.47-57.
[21]. Md Shakhaoath Khan., Ifsana Karim., Lasker Ershad
Ali., and Ariful Islam. (2012). Unsteady MHD free convection
boundary-layer flow of a nanofluid along a stretching sheet with thermal
radiation and viscous dissipation effects,
International Nano Letters, 2:24,pp.1-9.
[22]. MAKINDE, O. D. (2012). Analysis of Sakiadis flow of
nanofluids with viscous dissipation and Newtonian heating, Appl.
Math. Mech. -Engl. Ed., Vol.33(12), pp.1545-1554.
[23]. Chandrasekar, M., and Baskaran, S. (2007).
Thermodynamical modelling of viscous dissipation in
magnetohydrodynamic Flow, Theoret. Appl. Mech., Vol.34, No.3, pp. 197-
219.
[24]. Fekry M Hady, Fouad S Ibrahim, Sahar M Abdel-Gaied
and Mohamed R Eid. (2012). Radiation effect on viscous flow of
a nanofluid and heat transfer over a nonlinearly stretching sheet,
Nanoscale Research Letters, Vol.7, No.229.
[25]. Bhattacharyya Krishnendu and Layek, G. C. (2014).
Magnetohydrodynamic Boundary Layer Flow of Nanofluid over
an Exponentially Stretching Permeable Sheet, Hindawi Publishing
Corporation, Physics Research International, Article ID
592536, 12 pages.
[26]. Khan, W. A. and Pop, I. (2010). Boundary-layer flow
of a nanofluid past a stretching sheet, International Journal of Heat
and Mass Transfer, Vol. 53, No. 11-12, pp. 2477–2483.
[27]. Bhattacharyya, K., and Pop, I. (2011). MHD boundary
layer flow due to an exponentially shrinking sheet,
Magnetohydrodynamics, Vol. 47, pp. 337-344.
[28]. Ishak, A. (2011). MHD boundary layer flow due to an
exponentially stretching sheet with radiation effect,
SainsMalaysiana, Vol. 40, No. 4, pp. 391-395.
[29]. Shampine, L. F. and Kierzenka, J. (2000).
“Solving boundary value problems for ordinary differential
equations in
MATLAB with bvp4c,” Tutorial Notes.
[30]. Gangadhar, K. (2012). Similarity solution for
natural convection over a moving vertical plate with internal heat
generation and viscous dissipation, Int. J. of Appl. Math and Mech., Vol.
8 (18), pp. 90-100.
[31]. Magyari, E., and Keller, B. (1999). Heat and mass
transfer in the boundary layers on an exponentially stretching
continuous surface, Journal of Physics D, Vol. 32, No. 5, pp. 577-
585.