References
[1]. M. Aoki, (1968). “Control of large-scale dynamic
system by aggregation,” IEEE Transactions on Automatic
Control, Vol. AC-13, pp.246-253.
[2]. Y. Shamash, (1974). “Stable reduced Order models
using Pade type approximations,” IEEE Transactions on
Automatic Control, Vol.19, pp.615-616.
[3]. M. F. Hutton and B. Friendland, (1999). “Routh
approximations for reducing order of linear time-varying
systems,” IEEE Transactions on Automatic Control, Vol. 44,
pp.1782-1787.
[4]. N. K. Sinha, B. Kuszta and Van Nostrand
Reinhold,(1983). “Modeling and identification of
dynamic systems,” AICHE Journal, pp.133-163.
[5]. V. Krishnamurthy and V. Seshadri, (1978). “Model
Reduction using the Routh Stability Criterion”, IEEE Trans.
on Automatic Control. Vol.23, pp.729-731.
[6]. C. Hwang, (1984). “Mixed method of Routh and ISE
criterion approaches for reduced modeling of
continuous time systems”, Trans ASME J Dyn. Syst. Meas.
Control. Vol.106, pp.353-356.
[7]. N.N. Puri and D.P. Lan, (1988). “Stable model
reduction by impulse response error minimization using
Mihailov criterion and Pade's approximation”, Trans ASME
J Dyn. Syst. Meas. Control, Vol.110, pp.389-394.
[8]. P. Vilbe, L.C. Calvez, (1990). “On order reduction of
linear systems using an error minimization technique”,
Journal of Franklin Inst, Vol. 327, pp.513-514.
[9]. M. J. Bosley, F.P. Lees (1978). “A survey of simple transfer
function derivations from high order state variable
models, Automatica, Vol.8, pp. 765-775.
[10]. R. K. Appiah, (1978). “Linear model reduction using
Hurwitz polynomial Approximation”, Int. J. Control, Vol.28,
pp. 477-488.
[11]. T.C. Chen, C.Y Chang and K.W. Han, (1979).
“Reduction of transfer functions by the stability equation
method”, Journal of Franklin Institute, Vol.308. pp. 389-
404.
[12]. P.O. Gutman, C.F. Mannerfelt, P. Molander, (1982). “Contributions to the model reduction problem”, IEEE
Trans. on Automatic Control. Vol. 27. pp. 454- 455.
[13]. T. C. Chen, C. Y. Chang and K. W. Han, (1980).
“Model Reduction using the stability-equation method
and the Pade approximation method”, Journal of Franklin
Institute, Vol. 309, pp 473-490.
[14]. V. Singh, D. Chandra and H. Kar (2004). “Improved
Routh-Pade Approximants: A Computer-Aided
Approach”, IEEE Trans. Auto. Control, Vol. 49, No.2,
pp.292-296.
[15]. G. Pamar, S. Mukherjee and R. Prasad (2007).
“Relative mapping errors of linear time invariant systems
caused by Particle swarm optimized reduced order
model” World Academy of Science and Technology,
pp.336-342.
[16]. S. Yadav, N. P. Patidar, J. Singhai, S. Panda, and C.
Ardil (2009). “A Combined Conventional and Differential
Evolution Method for Model Order Reduction”,
International Journal of Information and Mathematical
Sciences, Vol.5 (2), pp.111-118.
[17]. G. Parmar, S.Mukherjee, and R. Prasad (2007).
“Reduced order modeling of Linear MIMO systems using
Genetic algorithm”, International Journal of Simulation
Modeling, Vol.6, No.3, pp.173-184.