Low Cost Instrumentation For Ultrasonic Measurements

Apurva Gandole*, Omkar S. Ghatpande**, Y. B. Gandole***
*-** BE E&TC, VIIT, Pune
*** Department of Electronics, Adarsha Science J.B.Arts and Birla Commerce Mahavidyalaya, Dhamangaon.
Periodicity:June - August'2014
DOI : https://doi.org/10.26634/jcir.2.3.3158

Abstract

Low cost Instrumentation for ultrasonic velocity and attenuation measurements in liquids and solids is described in this paper. 1--10 MHz pulse generator is assembled using CMOS integrated circuits having pulse width of 2 to 60 microseconds. The wideband receiver is developed by using the Wideband Low Distortion, High Gain Operational Amplifier (OPA 643). The gain and bandwidth of the receiver are 50 dB and 10 MHz respectively. Transit time measurement has been performed by using the NI-LABVIEW and Multifunction I/O card NI-USB-6212. The system is found suitable, accurate and versatile for ultrasonic velocity and attenuation measurements.

Keywords

Instrumentation, Ultrasonic, Pulse Generator, Receiver, CMOS (Complementary Metal-Oxide Semiconductor)

How to Cite this Article?

Gandole, A. Y., Ghatpande, K. O. S., and Gandole, Y. B. (2014). Low Cost Instrumentation For Ultrasonic Measurements. i-manager’s Journal on Circuits and Systems, 2(3), 25-31. https://doi.org/10.26634/jcir.2.3.3158

References

[1]. Agnihotri P. K., Adgaonkar C. S. (1988). “Theoretical evaluation of ultrasonic velocity in binary liquid mixtures”. Research and Industry, Vol.33, No.139.
[2]. Armitage A.D., Scales N.R., Hicks P.J., Payne P.A., Chen Q.X., Hatfield J.V. (1995). “An integrated array transducer receiver for ultrasound imaging, Sensors & Actuators” A: Physical, Vol.47(1), pp.542-546.
[3]. Bharadwaj M. C. (1986). “Principles and methods of ultrasonic characterization of materials”, Advanced Ceramic Materials, Vol.1 (4), 1986, pp.311-324.
[4]. Green Jr R.E. (1981). “Effect of metallic microstructure on ultrasonic attenuation in NDE: Material Characterization and Reliability Strategies”, O. Buckand S. M.Wolf Eds., Metallurgical Soc. of AIME, USA, Vol.6, No.4, pp.13-18.
[5]. Jayakumar T., Baldev Raj, Willems H., Arnold W. (1990). “Influence of microstructure on ultrasonic velocity in Nimonic Alloy PE-16”. Proc. Review of Progress in QNDE. Edited by D. O. Thompson and Chimenti, Plenum Press, New York, 10, 1693–1700.
[6]. Kaye G.W.C. and Laby T.H., (1985). “Tables of Physical th and chemical Constants”, 16 Ded. Harlow, UK: Longman Group Ltd., 94-111.
[7]. Klein M. B., Bacher G. D., Grunnet-Jepsen A., Wright D., and Moerner W. E.,(1999). “Homodyne Detection of Ultrasonic Surface Displacements Using Two-Wave Mixing in Photorefractive Polymers”, Opt. Commun. Vol.162, pp.79- 84 .
[8]. Leach W.M., (1994). “Controlled-source analogous circuits and SPICE models for piezoelectric transducers”, IEEE Trans. Ultrason, Ferroelect., Freq. Contr., Vol.41, pp.60- 66.
[9]. Matchenbacher C.D. & Fitchen F.C. (1973). “Low Noise Electronic Design”, John Wiley and Sons. New York, pp.230- 231.
[10]. Monchalin, J-P. (1986). “Optical detection of ultrasound ”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 33, No 5, pp. 485-499.
[11]. Monchalin J. P.(1985). “Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer”, Appl. Phys. Lett., Vol.47, pp.14-16.
[12]. O'Keefe C. V. and Palmer C. H. (1995). “Open Beam Inter ferometric Measurement of Ultrasound in nd Nondestructive Testing Handbook”, 2 ed., 9, Special Nondestructive Testing Methods, pp.160-190.
[13]. Podesta Michael De, (1995). “Understanding the nd Properties of Matter”, 2 ed. Taylor and Francis Inc. New York, 2002, 194.
[14]. Kaye G.W.C. and Laby T.H., “Tables of Physical and th chemical Constants”, 16 ed. Harlow, UK: Longman Group Ltd., pp.94-111.
[15]. Rao B.P.C., Jayakumar T, Bhattacharya D.K. and Raj Baldev, (1993). “New methodology for precise ultrasonic velocitymeasurement and its applications”, J. Pure Appl. Ultraso., India, Vol.15, pp.53-59.
[16]. Schaaff W., (1967). “Numerical data and functional relationalships in Science and Technology”, New Series Group II: Atomic and Molecular Physics, Vol.5: Molecular Acoustics, Eds. Hellwege K.H., New York, pp.51-52.
[17]. Scruby C. B. and Drain L. E., (1990). “Laser Ultrasonics: Techniques and Applications”, Adam Hilger Publ., 112.
[18]. Shan Q., Chen C. M., and Dewhurst R. J., (1995). “A Conjugate Optical Confocal Fabry-Perot-Interferometer For Enhanced Ultrasound Detection”. Meas. Sci. Technol. Vol.6, pp.921-928.
[19]. Soitkar V.S., Sunnapwar K.P., and Navaneet G.N., (1980). “Receiving Systems design for Sing-around Technique in Ultrasonic Measurements”, Indian J. Tech., Vol.18, pp.469.
[20]. Truel R., Elbaum C., and Chick B.B. (1969). “Ultrasonic methods in Solid State Physics”, Academic press, New York, pp.136-138.
[21]. Weast R.C. (ed.) ,(1964). “Handbook of Chemistry th and Physics”, 45 ed. Chemical Rubber Co., Cleveland Ohio, E-28.
[22]. Yawale S.P. and Pakade S.V., (1995). “Solid state variable frequency pulser receiver system for ultrasonic measurement”, Ind. J. Pure Appl. Phys., Vol.33, pp.638- 642.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.