Direct Data Compression Techniques of ECG- An Overview

Himani Tiwari*, Vikas Patel**, V. K. Giri***
* PG. Scholar, Department of Electrical Engineering, M.M.M. University of Technology, Gorakhpur, India.
** Faculty, Department of Electrical Engineering, M.M.M. University of Technology, Gorakhpur, India.
*** Professor, Department of Electrical Engineering, M.M.M. University of Technology, Gorakhpur, India.
Periodicity:October - December'2014


A wide variety of algorithms have been devised for the compression of ECG signals during last five decades. These techniques have not only brought about a considerable reduction in ECG data volume for storage but also enabled economic and efficient transmission of data for distant analysis. The main purpose of this paper is to present an overview of ECG compression methods especially the direct data compression methods as well as the various performance measures governing the effectiveness of these methods. Broadly ECG compression methods have been classified as direct compression method, transformation method and parameter extraction method. However, this paper addresses the various direct data compression techniques such as AZTEC, Modified AZTEC, Turning Point Technique, CORTES, Fan, SAPA, Entropy Coding, Peak-Picking, Cycle to Cycle compression and ECG data compression by DPCM.


ECG; Data Compression; PRD ; AZTEC; CORTES; TP; Fan; SAPA

How to Cite this Article?

Tiwari,H.,Patel,V.,Giri.V.K.,(2014). Direct Data Compression Techniques of ECG- An Overview. i-manager’s Journal on Digital Signal Processing, 2(4),19-29.


[1]. C. M. Kortman, (1964). “Redundancy reduction-a practical method of data compression,” Proc. IEEE, Vol. 55, pp. 253-263, pp. 1-16.
[2]. Sateh M.S. Jalaleddine, Chriswell G. Hutchens and Robert D. Strattan (1990). “ECG Data Compression Techniques-A Unified Approach” Vol. 37, No. 4.
[3]. Anand Kumar Patwari and Durgesh Pansari, (2014). “Analysis of ECG Signal Compression Technique Using Discrete Wavelet Transform for Different Wavelets,” Vol. 8, pp. 168-173.
[4]. Indu Saini and Priyanka, (2013). “Analysis of ECG Data Compression Techniques- A Survey Approach,” Vol. 3, pp. 544-548.
[5]. C. A. Andrews, J. M. Davies, and G. R. Schwarz, (1967). “Adaptive data compression,” Proc. IEEE, Vol. 5, pp. 267- 277.
[6]. Special issue on redundancy reduction, Proc. IEEE, Vol. 55.
[7]. J. E. Medlin, (1965). “Sampled-data prediction for telemetry bandwidth compression,” IEEE Trans. Space Electron. Telem., Vol. SET-I 1, pp. 29-36.
[8]. D. R. Weber, (1965). “A synopsis on data compression,” in Proc. Nar. Telemetering Conference (NTC), pp. 9-16.
[9]. L. W. Gardenhire, (1964). “Redundancy reduction the key to adaptive te-lemetry,” in Proc. Nat. Telemetry Conference, pp. 1-16.
[10]. C. M. Kortman, (1967). “Redundancy reduction-a practical method of data compression,” Proc. IEEE, Vol. 55, pp. 253-263.
[11]. G. Benelli, V. Cappellini, and F. Lotti, (1980). “Data compression techniques and applications,” Radio Electron. Eng., Vol. 50, No. 1/2, pp. 29-53.
[12]. N. S. Jayant and S. W. Christensen, (1979). “Adaptive aperture coding for speech waveforms-I,” Bell Sysf. Tech. J., Vol. 58, pp. 1631-1644.
[13]. B. M. Oliver, (1952). “Efficient coding.” Bell Sysr. Tech. J., Vol. 31, pp. 724-750.
[14]. P. Elias, (1955). “Predictive coding-Part I and Part 11,” IRE Trans. In- form. Theory, Vol. IT-1, pp. 16-33.
[15]. H. K. Reghbati, (1981). “An overview of data compression techniques,” IEEE Comput., Vol. 14, pp. 71-75.
[16]. J. R. Cox, F. M. Nolle, and R. M. Arthur, (1972). “Digital analysis of the electroencephalogram, the blood pressure wave, and the ECG,” Proc. IEEE, Vol. 60, pp. 1137-1164.
[17]. B. Furht and A. Perez, (1988). “An adaptive real-time ECG compression algorithm with variable threshold,” IEEE Trans. Biomed. Eng., Vol. 3 5, pp. 489-494.
[18]. W. C. Mueller, (1978). “Arrhythmia detection program for an ambulatory ECG monitor,” Biomed. Sci. Instrument., Vol. 14, pp. 81-85.
[19]. J. P. Abenstein and W. J. Tompkins, (1982). “New datareduction algorithm for real-time ECG analysis,” IEEE Trans. Biomed. Eng., Vol. BME-29, pp. 43-48.
[20]. L. W. Gardenhire, (1965). “Data compression for biomedical telemetry,” in Biomedical Telemetry, C. A. Caceres, Ed. New York: Academic, ch11.
[21]. W. J. Tompkins and J. G. Webster, Eds., (1981). Design of Microcomputer-Based Medical Iiistrurnenration. Englewood Cliffs, NJ: Prentice-Hall.
[22]. D. Stewart, D. Berghofer, and R . G. Dower, (1979). “Data compression of ECG signals,” Eng. Foundation Con$ Computerized Interpre-ration of the ECG, Asilomar, CA., pp. 162-177.
[23]. C. E. Shannon, (1948). “A mathematical theory of communication,” Bell Sysr. Tech. J., Vol. 27, pp. 379-423.
[24]. D. A. Huffman, (1952). “A method for the construction of minimum-re-dundancy codes,” Proc. IRE, Vol. 40, pp. 1098-1 101.
[25]. H. Witten, R. M. Neal, and J. G. Cleary, (1987). “Arithmetic coding for data compression,” Commun. ACM, Vol. 30, pp. 520-540.
[26]. H. Tanaka, (1987). “Data structure of Huffman codes and its application to efficient encoding and decoding,” IEEE Trans. Inform. Theory, Vol. 33, pp. 154-156.
[27] G .V. Cormack, and R. N. Horspool, (1984). “Algorithms for adaptive Huffman codes,” Inform. Process. Lett., Vol. 18, pp. 159-165.
[28]. E. N. Gilbert, (1971). “Codes based on inaccurate source probabilities,” IEEE Trans. Inform. Theory, Vol. 17, pp. 304-314.
[29]. H. Imai, N. Kimura, and Y. Yoshida, (1985). “An efficient encoding method for electrocardiography using Spline functions,” Syst. Comput. Japan, Vol. 16, No. 3, pp. 85-94.
[30]. T. S. Ibiyemi, (1986). “A novel data compression technique for electro-cardiogram classification,” Eng. Med., Vol. 15, No. 1, pp. 35-38.
[31]. G. Lachiver, J. M. Eichner, F. Bessette, and W. Seufert, (1986). “An algorithm for ECG data compression using spline functions,” Comput. Cardiol., Boston, MA, pp. 575- 578.
[32]. E. A. Giakoumakis and G. Papakonstantinou, (1990). “An ECG data IEEE Transactions on Biomedical Engineering, Vol. 37. No. 4.
[33]. S. M. S. Jalaleddine, C. G. Hutchens, W. A. Coberly, and R. D. Strattan. (1988). “Compression of Halter ECG data,” Biomed. Sci. Instrument., Vol. 24, pp. 35-45.
[34]. “Data compression of Halter ECG's,” M.S. thesis, Univ. Tulsa, Tulsa, OK, 1987.
[35]. L. D. Davisson, (1967). “The Fan method of data compression,” 1966 Goddard summer workshop, NASA TM X-55742, X-700-67-94, Final Rep., pp. 23-30.
[36]. S. M. Blanchard and R. C. Barr, (1985). “Comparison of methods for adaptive sampling of cardiac electrograms and electrodcardiograms,” Med. Biol. Eng. Comput., Vol. 23, pp. 377-386.
[37]. A. E. Pollard and R. C. Barr, (1987). “Adaptive sampling of intracellular and extracellular cardiac potentials with the Fan method,” Med. Biol. Eng. Comput., Vol. 25, pp. 261- 268.
[38]. M. Ishijima, S. B. Shin, G. H. Hostetter, and J. Sklansky, (1983). “Scan-along polygon approximation for data compression of electrocar- diograms,” IEEE Trans. Biomed. Eng., Vol. BME-30, pp. 723-729.
[39]. R. C. Barr, S. M. Blanchard, and D. A. Dipersio, (1985). “SAPA-2 is the Fan,” IEEE Trans. Biomed. Eng., Vol. BME-32, p. 337.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.