References
[1]. Das S. K, Choi S. U, Yu W, Pradeep T, (2007), “Nanofluids:
Science and Technology”, Wiley, pp. 416.
[2]. Das S. K, Choi S. U, Patel H. E, (2006), “Heat transfer in
nanofluids: a review” Heat transfer Engineering, Vol 27(10),
pp. 3-19.
[3]. Shawgo R. S, Grayson A. C. R, Li Y, Cima M. J, (2002),
“BioMEMS for drug delivery”, Current Opinion in Solid State
And Materials Science, Vol. 6(4), pp 329-339.
[4]. Sharma R. K, (2014), Military uses of Nanotechnology,
pp.296.
[5]. Elhissi A. M. A, Ahmed W, Hassan I. U, Dhanak V. R,
D'Emanuele A, (2012), “Carbon Nanotubes in Cancer
Therapy and Drug Delivery”, Journal of Drug Delivery, 2012,
10 pages.
[6]. Vashist S. K, Zheng D, Pastorin G, Al-Rubeaan K, Luong
J. H. T, Sheu F.S, (2011), “Delivery of drugs and biomolecules
using carbon nanotubes”, Carbon, Vol. 49, pp. 4077
–4097.
[7]. Eastman J.A, Choi S.U, LI S, Yu W, Thompson L. J, (2001),
“Anomalously increased effective thermal conductivities of
ethylene glycol-based nanofluids containing copper
nanoparticles”, Applied physics letters, Vol. 78(6), pp. 718-
720.
[8]. Zhu H. T, Lin Y.S, Yin Y.S, (2004), “A novel one-step
chemical method for preparation of copper nanofluids”,
Journal of Colloid and Interferface Science, Vol. 227(1),
pp. 100-103.
[9]. Zhu H, Zhang C, Tang Y, Wang J, Ren B, Yin Y, (2007), “Preparation and thermal conductivities of suspensions of
graphite nanoparticles”, Carbon, Vol. 45(1), pp. 226-228.
[10]. Chen L, Xie H, Li Y, Yu W, (2008), “Nanofluids containing
carbon nanotubes treated by mechanical reaction”,
Thermochimica Acta, Vol. 477(1-2), pp. 21-24.
[11]. Ma K. Q, Liu J, (2007), “Nano liquid-metal fluid as
ultimate coolant”, Physics Letters A, Vol 361(3), pp. 252-
256.
[12]. Kulkarni D. P, Das D.K, Vajjha R.S, (2009), “Application
of Nanofluids in heating buildings and reducing pollution”,
Applied Engineering, Vol. 86(12), pp. 2566-2573.
[13]. Nakano M, Matsuura H, Ju D, et al., (2008), 'Drug
delivery system using nano-magnetic fluid” in Proceedings
of the 3rd International Conference of Innovative
Computing Information and Control (ICICIC'08), Dalian,
China.
[14]. Phillip J, Jaykumar T, Kalyanasundaram P, Raj B, “A
tunable optical filter”, Measurement Science and
Technology, Vol 14(8), pp. 4342-4347.
[15]. Mishra A, Tripathy P, Ram S, Fecht H. J, (2009),
“Optical properties in nanofluids of gold nanoparticles in
poly(vinylpyrrolidone)”, Journal of Nanoscience and
Nanoteshnology, Vol. 9(7), pp. 4342-4347.
[16]. Portney N.G, Ozkan M, (2006), “Nano-oncology: drug
delivery, imaging, and sensing”, Anal Bioanal Chem, Vol.
384(3), pp. 620–30.
[17]. Gabizon A, Isacson R, Libson E, Kaufman B, Uziely B,
Catane R, et al., (1994), “Clinical studies of liposomeencapsulated
doxorubicin”, Acta Oncol, Vol. 33(7), pp.
779–86.
[18]. Lin E, Nemunaitis J, (2004), “Oncolytic viral therapies”,
Cancer Gene Ther, Vol. 11(10), pp. 643–64.
[19]. Otanicar T. P, Golden J. S, (2009), “Comparative
Environmental and Economic Analysis of Conventional
and Nanofluid Solar Hot Water Technologies”, Environ. Sci.
Technol., Vol. 43(15), pp. 6082 – 6087.
[20]. Sani E, Barison S, Pagura C, Mercatelli L, Sansoni P,
Fontani D, Jafrancesco D, Francini F, (2010), “Carbon
nanohorns-based nanofluids as direct sunlight absorbers”,
Optics Express, Vol. 18(5), pp. 5179-5187.
[21]. Tanaka K, Kitamura N, Chujo Y, (2008), “Properties of
superparamagnetic iron oxide nanoparticles assembled
on nucleic acids”, Nucleic Acids Symp Ser (Oxf), Vol. 52(1),
pp. 693–4.
[22]. Pastorin G, Kostarelos K, Prato M, Bianco A, (2005),
“Functionalized Carbon Nanotubes: Towards the Delivery
of Therapeutic Molecules”, Journal of Biomedical
Nanotechnology, Vol. 1(2), pp. 133-142.
[23]. Eatman J. A, Choi V.S, Li S, Thompson L. J, Lee S,
(1997), “Enhanced thermal conductivity through the
development of nanofluids”, Materials Research Society
Symposium – Proceedings, MA, USA, Vol 457, pp. 3-11.
[24]. Lee S, Choi S. U.S, Li S, Eastman J. A, (1999),
“Measuring thermal conductivity of fluids containing oxide
nanoparticles”, Journal of Heat Transfer, Vol. 121, pp. 280-
289
[25]. Wang X, Xu X, Choi S. U. S, (1999), “Thermal
conductivity of nanoparticles-fluid mixtures”, Journal of
Thermophysics and Heat Transfer, Vol. 13(4) ,pp. 474-480.
[26]. Das S.K, Putta N. Thiesen P, Roetzel W, (2003),
“Temperature dependence of thermal conductivity
enhancement for nanofluids”, ASME Trans. J. Heat Transfer,
Vol. 125, pp. 567 – 574.
[27]. Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q, (2002), “Thermal
conductivity enhancement of suspensions containing
nanosized alumina particles”, Journal of Applied Physics,
Vol. 91, pp. 4568.
[28]. Li C. H, Peterson G.P, (2006), “Experimental
investigations of temperature and volumefraction variation
on the effective thermal conductivity of nanoparticles
suspensions(nanofluids)”, Journal of Applied physics, Vol.
99(8), pp. 084314.
[29]. Xuan, Y, Li Q, (2000), Heat transfer enhancement of
nanofluids. International Journal of Heat and Fluid Transfer,
Vol. 21, pp. 58–64.
[30]. Hong, T.-K., Yang, H.-S., Choi, C.J., (2005), “Study of
the Enhanced Thermal Conductivity of Fe Nanofluids”,
Journal of Applied Physics, Vol. 97(6), pp. 1-4.
[31]. Patel H, Das S, Sundararajan T, Sreekumaran A,
George B, Pradeep T, (2003), “Thermal conductivities of
naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous
enhancement and chemical effects”, Appl. Phys. Lett., Vol.
83 (14), pp. 2931– 2933.
[32]. Murshed, S. M. S., Leong, K. C., and Yang, C, (2005),
“Enhanced thermal conductivity of TiO2 – Water based
nanofluids”. International Journal of Thermal Sciences, Vol.
44(4), pp. 367–373.
[33]. Xie H, Wang T, Xi J, Liu Y, Ai F, Wu Q, (2002), “Thermal
conductivity enhancement of suspensions containing
nanosized alumina particles”, J. Appl. Phys., Vol. 91 (7), pp.
4568– 4572.
[34]. Choi S, Zhang Z, Yu W, Lockwood F, Grulke E, (2001),
“Anomalously thermal conductivity enhancement in
nanotube suspensions”, Appl. Phys. Lett., Vol. 79 (14), pp.
2252– 2254.
[35]. Biercuk, M., Llaguno, M., Radosavljevic, M., Hyun, J.,
Johnson, A., Fischer J, (2002), “Carbon nanotube
composites for thermal management”, Applied Physics
Letters, Vol. 80(15), pp. 2767–2769.
[36]. Xie, H., Lee, H., Youn, W., and Choi, M, (2003),
“Nanofluids containing multiwalled carbon nanotubes and
their enhanced thermal conductivities”, Journal of Applied
Physics, Vol. 94(8), pp. 4967–4971.
[37]. Choi, E. S., Brooks, J. S., Eaton, D. L., Al-Haik, M. S.,
Hussaini, M. Y., Garmestani, H., Li, D., Dahmen, K, (2003),
“Enhancement of thermal and electrical properties of
carbon nanotube polymer composites by magnetic field
processing”. Journal of Applied Physics, Vol. 94(9), pp.
6034–6039.
[38]. Assael, M. J., Chen, C. F., Metaxa, I. N., Wakeham, W.
A, (2003), “Thermal conductivity of suspensions of carbon
th nanotubes in water”. In 15 Symposium on Thermophysical
Properties. National Institute of Standards, University of
Colorado, Boulder, USA.
[39]. Assael, M. J., Chen, C. F., Metaxa, I. N., Wakeham, W.
A, (2004), “Thermal Conductivity of Suspensions of Carbon
Nanotubes in Water ”. International Journal of
Thermophysics, Vol. 25(4), pp. 971–985.
[40]. Assael, M. J., Metaxa, I. N., Arvanitidis, J., Christofilos,
D., and Lioutas, C, (2005), “Thermal conductivity
enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of
two different dispersants”. International Journal of
Thermophysics, Vol. 26(3), pp. 647–664.
[41]. Liu, M.-S., Ching-Cheng Lin, M., Huang, I. T.,Wang, C.-
C, (2005), “Enhancement of thermal conductivity with
carbon nanotube for nanofluids”. International
Communications in Heat and Mass Transfer, Vol. 32(9), pp.
1202–1210.
[42]. Wen, D. and Ding, Y, (2004),. “Effective thermal
conductivity of aqueous suspensions of carbon nanotubes
(carbon nanotube nanofluids)”, Journal of Thermophysics
and Heat Transfer, Vol. 18( 4), pp. 481–485.
[43]. Chien, H.-T., Tsai, C.-I., Chen, P.-H., and Chen, P.-Y,
(2003), “Improvement on thermal performance of a
diskshaped miniature heat pipe with nanofluid”. ICEPT, Fifth
International Conference on Electronic Packaging
Technology. Proceedings. (IEEE Cat. No.03EX750), Vol. 389.
IEEE, Shanghai, China.
[44]. Tsia JP, Hwang JJ, (1999), “Measurements of heat
transfer and fluid flow in a rectangular duct with alternate
attached-detached rib-arrays”. Int J Heat Mass Trans, Vol.
42(11),pp. 2071–83.
[45]. Ding, Y., Alias, H., Wen, D., and Williams, R. A, (2005),
“Heat transfer of aqueous suspensions of carbon
nanotubes (CNT nanofluids)”. International Journal of Heat
and Mass Transfer, Vol. 49(1-2), pp. 240–250.
[46]. Pak, B. and Cho, Y, (1998), “Hydrodynamic and heat
transfer study of dispersed fluids with submicron metallic
oxide particles”. Experimental Heat Transfer, Vol. 11(2), pp.
151–170.
[47]. Yang, Y., Zhang, Z. G., Grulke, E. A., Anderson, W. B.,
and Wu, G, (2005), “Heat transfer properties of
nanoparticle-in-fluid dispersions (nanofluids) in laminar
flow”. International Journal of Heat and Mass Transfer, Vol.
48(6) pp. 1107–1116.
[48]. Heris, S., Etemad, S. G., and Esfahany, M, (2006),
“Experimental investigation of oxide nanofluids laminar flow
convective heat transfer”, International Communications
in Heat and Mass Transfer, Vol. 33( 4), pp. 529–535.
[49]. Putra, N., Roetzel, W., and Das, S. K, (2003), “Natural
convection of nano-fluids”. Heat and Mass Transfer, Vol. 39(8), pp. 775–784.
[50]. Wen, D. and Ding, Y, (2005), “Formulation of
nanofluids for natural convective heat transfer applications”, International Journal of Heat and Fluid Flow,
Vol. 26(6) pp. 855–864.