A Comparative Study on Physico-Chemical Characteristics And Synthesis Of Typical Nano-Fluids

K.S.R. Murthy*, K. Mohan Reddy**
*-** Department of Chemistry, College of Engineering Studies (CoES), University of Petroleum & Energy Studies (UPES), Dehradun, India.
Periodicity:January - March'2015
DOI : https://doi.org/10.26634/jms.2.4.3124

Abstract

The fluid suspensions of nano materials have shown various interesting properties and their distinctive features offer unprecedented potential for many applications in industry. This paper summarizes the recent progress on the study of nano-fluids such as the preparation methods with focus on two-step and one-step methods. The stability of nano-fluids and the techniques to enhance stability have also been discussed. The applications of nano fluids ranging over a wide spectrum from electronics, mechanical to industrial and environmental have been discussed in detail. Special emphasis has been given to the energy application to Nanofluids. The paper concludes by identifying the various opportunities for further research, study and development of nano-science and nano-technology to benefit the human civilization and universe.

Keywords

Nanofluids, Synthesis, Physicochemical Characteristics.

How to Cite this Article?

Murthy, K. S. R., and Reddy, K. M. (2015). A Comparative Study on Physico-Chemical Characteristics and Synthesis of Typical Nano-Fluids. i-manager’s Journal on Material Science, 2(4), 29-40. https://doi.org/10.26634/jms.2.4.3124

References

[1]. Das S. K, Choi S. U, Yu W, Pradeep T, (2007), “Nanofluids: Science and Technology”, Wiley, pp. 416.
[2]. Das S. K, Choi S. U, Patel H. E, (2006), “Heat transfer in nanofluids: a review” Heat transfer Engineering, Vol 27(10), pp. 3-19.
[3]. Shawgo R. S, Grayson A. C. R, Li Y, Cima M. J, (2002), “BioMEMS for drug delivery”, Current Opinion in Solid State And Materials Science, Vol. 6(4), pp 329-339.
[4]. Sharma R. K, (2014), Military uses of Nanotechnology, pp.296.
[5]. Elhissi A. M. A, Ahmed W, Hassan I. U, Dhanak V. R, D'Emanuele A, (2012), “Carbon Nanotubes in Cancer Therapy and Drug Delivery”, Journal of Drug Delivery, 2012, 10 pages.
[6]. Vashist S. K, Zheng D, Pastorin G, Al-Rubeaan K, Luong J. H. T, Sheu F.S, (2011), “Delivery of drugs and biomolecules using carbon nanotubes”, Carbon, Vol. 49, pp. 4077 –4097.
[7]. Eastman J.A, Choi S.U, LI S, Yu W, Thompson L. J, (2001), “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles”, Applied physics letters, Vol. 78(6), pp. 718- 720.
[8]. Zhu H. T, Lin Y.S, Yin Y.S, (2004), “A novel one-step chemical method for preparation of copper nanofluids”, Journal of Colloid and Interferface Science, Vol. 227(1), pp. 100-103.
[9]. Zhu H, Zhang C, Tang Y, Wang J, Ren B, Yin Y, (2007), “Preparation and thermal conductivities of suspensions of graphite nanoparticles”, Carbon, Vol. 45(1), pp. 226-228.
[10]. Chen L, Xie H, Li Y, Yu W, (2008), “Nanofluids containing carbon nanotubes treated by mechanical reaction”, Thermochimica Acta, Vol. 477(1-2), pp. 21-24.
[11]. Ma K. Q, Liu J, (2007), “Nano liquid-metal fluid as ultimate coolant”, Physics Letters A, Vol 361(3), pp. 252- 256.
[12]. Kulkarni D. P, Das D.K, Vajjha R.S, (2009), “Application of Nanofluids in heating buildings and reducing pollution”, Applied Engineering, Vol. 86(12), pp. 2566-2573.
[13]. Nakano M, Matsuura H, Ju D, et al., (2008), 'Drug delivery system using nano-magnetic fluid” in Proceedings of the 3rd International Conference of Innovative Computing Information and Control (ICICIC'08), Dalian, China.
[14]. Phillip J, Jaykumar T, Kalyanasundaram P, Raj B, “A tunable optical filter”, Measurement Science and Technology, Vol 14(8), pp. 4342-4347.
[15]. Mishra A, Tripathy P, Ram S, Fecht H. J, (2009), “Optical properties in nanofluids of gold nanoparticles in poly(vinylpyrrolidone)”, Journal of Nanoscience and Nanoteshnology, Vol. 9(7), pp. 4342-4347.
[16]. Portney N.G, Ozkan M, (2006), “Nano-oncology: drug delivery, imaging, and sensing”, Anal Bioanal Chem, Vol. 384(3), pp. 620–30.
[17]. Gabizon A, Isacson R, Libson E, Kaufman B, Uziely B, Catane R, et al., (1994), “Clinical studies of liposomeencapsulated doxorubicin”, Acta Oncol, Vol. 33(7), pp. 779–86.
[18]. Lin E, Nemunaitis J, (2004), “Oncolytic viral therapies”, Cancer Gene Ther, Vol. 11(10), pp. 643–64.
[19]. Otanicar T. P, Golden J. S, (2009), “Comparative Environmental and Economic Analysis of Conventional and Nanofluid Solar Hot Water Technologies”, Environ. Sci. Technol., Vol. 43(15), pp. 6082 – 6087.
[20]. Sani E, Barison S, Pagura C, Mercatelli L, Sansoni P, Fontani D, Jafrancesco D, Francini F, (2010), “Carbon nanohorns-based nanofluids as direct sunlight absorbers”, Optics Express, Vol. 18(5), pp. 5179-5187.
[21]. Tanaka K, Kitamura N, Chujo Y, (2008), “Properties of superparamagnetic iron oxide nanoparticles assembled on nucleic acids”, Nucleic Acids Symp Ser (Oxf), Vol. 52(1), pp. 693–4.
[22]. Pastorin G, Kostarelos K, Prato M, Bianco A, (2005), “Functionalized Carbon Nanotubes: Towards the Delivery of Therapeutic Molecules”, Journal of Biomedical Nanotechnology, Vol. 1(2), pp. 133-142.
[23]. Eatman J. A, Choi V.S, Li S, Thompson L. J, Lee S, (1997), “Enhanced thermal conductivity through the development of nanofluids”, Materials Research Society Symposium – Proceedings, MA, USA, Vol 457, pp. 3-11.
[24]. Lee S, Choi S. U.S, Li S, Eastman J. A, (1999), “Measuring thermal conductivity of fluids containing oxide nanoparticles”, Journal of Heat Transfer, Vol. 121, pp. 280- 289
[25]. Wang X, Xu X, Choi S. U. S, (1999), “Thermal conductivity of nanoparticles-fluid mixtures”, Journal of Thermophysics and Heat Transfer, Vol. 13(4) ,pp. 474-480.
[26]. Das S.K, Putta N. Thiesen P, Roetzel W, (2003), “Temperature dependence of thermal conductivity enhancement for nanofluids”, ASME Trans. J. Heat Transfer, Vol. 125, pp. 567 – 574.
[27]. Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q, (2002), “Thermal conductivity enhancement of suspensions containing nanosized alumina particles”, Journal of Applied Physics, Vol. 91, pp. 4568.
[28]. Li C. H, Peterson G.P, (2006), “Experimental investigations of temperature and volumefraction variation on the effective thermal conductivity of nanoparticles suspensions(nanofluids)”, Journal of Applied physics, Vol. 99(8), pp. 084314.
[29]. Xuan, Y, Li Q, (2000), Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Transfer, Vol. 21, pp. 58–64.
[30]. Hong, T.-K., Yang, H.-S., Choi, C.J., (2005), “Study of the Enhanced Thermal Conductivity of Fe Nanofluids”, Journal of Applied Physics, Vol. 97(6), pp. 1-4.
[31]. Patel H, Das S, Sundararajan T, Sreekumaran A, George B, Pradeep T, (2003), “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects”, Appl. Phys. Lett., Vol. 83 (14), pp. 2931– 2933.
[32]. Murshed, S. M. S., Leong, K. C., and Yang, C, (2005), “Enhanced thermal conductivity of TiO2 – Water based nanofluids”. International Journal of Thermal Sciences, Vol. 44(4), pp. 367–373.
[33]. Xie H, Wang T, Xi J, Liu Y, Ai F, Wu Q, (2002), “Thermal conductivity enhancement of suspensions containing nanosized alumina particles”, J. Appl. Phys., Vol. 91 (7), pp. 4568– 4572.
[34]. Choi S, Zhang Z, Yu W, Lockwood F, Grulke E, (2001), “Anomalously thermal conductivity enhancement in nanotube suspensions”, Appl. Phys. Lett., Vol. 79 (14), pp. 2252– 2254.
[35]. Biercuk, M., Llaguno, M., Radosavljevic, M., Hyun, J., Johnson, A., Fischer J, (2002), “Carbon nanotube composites for thermal management”, Applied Physics Letters, Vol. 80(15), pp. 2767–2769.
[36]. Xie, H., Lee, H., Youn, W., and Choi, M, (2003), “Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities”, Journal of Applied Physics, Vol. 94(8), pp. 4967–4971.
[37]. Choi, E. S., Brooks, J. S., Eaton, D. L., Al-Haik, M. S., Hussaini, M. Y., Garmestani, H., Li, D., Dahmen, K, (2003), “Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing”. Journal of Applied Physics, Vol. 94(9), pp. 6034–6039.
[38]. Assael, M. J., Chen, C. F., Metaxa, I. N., Wakeham, W. A, (2003), “Thermal conductivity of suspensions of carbon th nanotubes in water”. In 15 Symposium on Thermophysical Properties. National Institute of Standards, University of Colorado, Boulder, USA.
[39]. Assael, M. J., Chen, C. F., Metaxa, I. N., Wakeham, W. A, (2004), “Thermal Conductivity of Suspensions of Carbon Nanotubes in Water ”. International Journal of Thermophysics, Vol. 25(4), pp. 971–985.
[40]. Assael, M. J., Metaxa, I. N., Arvanitidis, J., Christofilos, D., and Lioutas, C, (2005), “Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants”. International Journal of Thermophysics, Vol. 26(3), pp. 647–664.
[41]. Liu, M.-S., Ching-Cheng Lin, M., Huang, I. T.,Wang, C.- C, (2005), “Enhancement of thermal conductivity with carbon nanotube for nanofluids”. International Communications in Heat and Mass Transfer, Vol. 32(9), pp. 1202–1210.
[42]. Wen, D. and Ding, Y, (2004),. “Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids)”, Journal of Thermophysics and Heat Transfer, Vol. 18( 4), pp. 481–485.
[43]. Chien, H.-T., Tsai, C.-I., Chen, P.-H., and Chen, P.-Y, (2003), “Improvement on thermal performance of a diskshaped miniature heat pipe with nanofluid”. ICEPT, Fifth International Conference on Electronic Packaging Technology. Proceedings. (IEEE Cat. No.03EX750), Vol. 389. IEEE, Shanghai, China.
[44]. Tsia JP, Hwang JJ, (1999), “Measurements of heat transfer and fluid flow in a rectangular duct with alternate attached-detached rib-arrays”. Int J Heat Mass Trans, Vol. 42(11),pp. 2071–83.
[45]. Ding, Y., Alias, H., Wen, D., and Williams, R. A, (2005), “Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)”. International Journal of Heat and Mass Transfer, Vol. 49(1-2), pp. 240–250.
[46]. Pak, B. and Cho, Y, (1998), “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”. Experimental Heat Transfer, Vol. 11(2), pp. 151–170.
[47]. Yang, Y., Zhang, Z. G., Grulke, E. A., Anderson, W. B., and Wu, G, (2005), “Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow”. International Journal of Heat and Mass Transfer, Vol. 48(6) pp. 1107–1116.
[48]. Heris, S., Etemad, S. G., and Esfahany, M, (2006), “Experimental investigation of oxide nanofluids laminar flow convective heat transfer”, International Communications in Heat and Mass Transfer, Vol. 33( 4), pp. 529–535.
[49]. Putra, N., Roetzel, W., and Das, S. K, (2003), “Natural convection of nano-fluids”. Heat and Mass Transfer, Vol. 39(8), pp. 775–784.
[50]. Wen, D. and Ding, Y, (2005), “Formulation of nanofluids for natural convective heat transfer applications”, International Journal of Heat and Fluid Flow, Vol. 26(6) pp. 855–864.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.