References
[1]. Costa. A.L, Simoes Costa. A., (2007). “Energy and
ancillary service dispatch through dynamic optimal
power flow,” Electrical Power Systems Research, Vol.77,
No.8, pp. 1047-1055.
[2]. Martinez-Crespo. J, Usaola. J, Fernandez. J.L, (2007).
“Optimal security constrained power scheduling by
Benders decomposition,” Electrical Power Systems
Research, Vol.77 No. 7, pp. 739-753.
[3]. A. A. El-Keib, H. Ding, C.C. Carroll, etal., (1991). “Current
Challenges for the Electric Power Industry,” U.S. Dept of
Energy., Workshop of Real Time Control and Operation of
Electric Power Systems, Denver, Colorado, Nov.
[4]. Bansilal, Thukaram. D, Parthasarathy., (1996).
“Optimal reactive power dispatch algorithm for voltage
stability improvement,” Electric Power Energy Systems,
Vol. 18, No.7, pp. 461-468.
[5]. T.Niknam, M.R.Narimani, J.Aghaei, R.Azizipanah-
Abarghooee., (2012). “Improved particle swarm
optimization for multi-objective optimal power flow
considering the cost, loss, emission and voltage stability
index,” IET Generation, Transmission & Distribution., Vol. 6,
No. 6, pp. 515-527.
[6]. Momoh, JA., El-Hawary, ME., Adapa R., (1999). “A
review of selected optimal power literature to 1993. Part I:
non-liear and quadratic programming approaches,” IEEE
Transactions on Power Systems., Vol. 14, No. 1, pp. 96-
104.
[7]. Momoh, JA., El-Hawary, ME., Adapa R., (1999). “A
review of selected optimal power literature to 1993. Part II:Newton, linear programming and interior point
methods,” IEEE Transactions on Power Systems., Vol. 14,
No. 1, pp. 105-111.
[8]. H. Ambriz-Perez., E. Acha., C.R. Fuerte-Esquivel., De
La Torre A., (1998). “Incorporation of a UPFC model in an
optimal power flow using Newton's method,” IEEE
Proceedings on Generation Transmission Distribution.,
Vol. 145, No. 3, pp. 336-344.
[9]. C.R. Fuerte-Esquivel., E. Acha., H. Ambriz-Perez,
(2000). “A Comprehensive Newton-Raphson UPFC Model
for the Quadratic Power Flow Solution of Practical Power
Networks,” IEEE Transactions on Power Systems., Vol. 15,
No. 1, Feb, pp. 102-109.
[10]. Khaled Z., Sayah S., (2008). “Optimal power flow with
environmental constraints using a fast successive linear
programming algorithm, applications to the Algerian
power system,” Energy Conversion and Management.,
Vol. 49, No. 11, pp. 3363-3366.
[11]. Taher Niknam., Mohammad rasoul Narimani.,
Masoud Jabbari., Ahmad Reza Malekpour, (2011). “A
modified shuffle frog leaping algorithm for multi-objective
optimal power flow,” Journal of Energy., Vol. 36, pp. 6420-
6432.
[12]. S.F. Brodsky and R.W. Hahn., (1986). “Assessing the
influence of power pools on emission constrained
economic dispatch,” IEEE Transactions on Power
Systems., Vol. PWRS-1., Feb.
[13]. J.B. Cadogan and L. Eisenberg., (1981). “Sulfur-
Oxide emissions management for electric power
systems,” IEEE Transactions on Power App. and Systems.,
Vol PAS-96, March.
[14]. O.E. Finningan and A.A. Fouad., (1974). “Economic
Dispatch with Pollution Constraints,” Paper C 74 1555-8,
IEEE PES Winter Meeting, New York, NY, Jan.
[15]. J.K. Delson, (1974). “Controlled emission dispatch,”
IEEE PES Winter meering.
[16]. J.S. Helsin and B.F. Hobbs., (1989). “A multiobjective
production costing models for analysing emission
dispatching and fuel switch,” IEEE Transactions on Power
Systems, Vol. 4, No. 3., Aug.
[17]. T.A. Ferrar, (1974). “Effluent charges – A price on
pollution,” Atmospheric Environment, Vol. 8.
[18]. Coello CAC., (1999). “A comprehensive survey of
evolutionar y-based multi-objective optimization
techniques,” Knowledge Information System., Vol. 1, No.
3, pp.269-308.
[19]. Toffolo A, Lazzaretto A., (2002). “Evolutionary
algorithms for multi-objective energetic and economic
optimization in thermal system design,” Energy., Vol. 27,
No. 6, pp. 549-567.
[20]. Abido MA., (2003). “Environmental /economic
power dispatch using multi-objective evolutionary
algorithms,” IEEE Transactions on Power Systems., Vol. 18,
No. 4, pp.1529-1537.
[21]. Andrew K., Haiyang Z., (2010). “Optimization of wind
turbine energy and power factor with an evolutionary
computation algorithm,” Energy., Vol. 35, No. 3, pp. 1324-
1332.
[22]. N Srinivas and Kalyanmoy Deb., (1994).
“Multiobjective Optimization Using Nondominated Sorting
in Genetic Algorithms,” Evolutionary Computation., Vol. 2,
No. 3, pp. 221-248.
[23]. M.A. Abido., (2003). “A novel multiobjective
evolutionary algorithm for environmental/economic
power dispatch,” Electric Power Systems Research., Vol
65, pp. 71-81.
[24]. B.S. Kermanshahi, Y. Wu, K. Yasuda, R. Yokoyama.,
(1990). “Environmental marginal cost evaluation by noninferiority
surface,” IEEE Transactions on power systems.,
Vol 5, No. 4., pp. 1151-1159.
[25]. R. Yokoyama, S.H. Bae, T. Morita, H. Sasaki., (1988).
“Multi objective generation dispatch based on probability
security criteria,” IEEE Transactions on power systems, Vol.
3, No. 1., pp. 317-324.
[26]. A.A. Abou El-Ela, M.A. Abido., (1992). “Optimal
operation strategy for reactive power control in:
Modelling, Simulation and Control, part A,” Vol. 41., AMSE
Press., pp. 19-40.
[27]. Y.T. Hsiao, H.D. Chiang, C.C. Liu, Y.L. Chen., (1994).
“A computer package for optimal multi objective VAR planning in large scale power systems,” IEEE Transactions
on Power Systems, Vol. 9, No. 2., pp. 668-676.
[28]. M. Sailaja Kumari, Sydulu Maheswarapu., (2010).
“Enhanced Genetic Algorithm based computation
technique for multi-objective optimal power flow
solution,” Electrical Power and Energy Systems., Vol. 32.,
pp. 736-742.
[29]. Kennedy J, Eberhart R., (1995). “Particle Swarm
Optimization,” IEEE International conference on Neural
Networks, Vol. 4., pp. 1942-1948.
[30]. El-Keib. A. A, Ma. H, Hart. J. L., (1994). “Economic
Dispatch in view of the clean AIR ACT of 1990,” IEEE
Transactions on Power Systems, Vol. 9, No. 2., pp. 972-978.
[31]. Ya-Chin Chang, Rung-Fang Chang, Tsun-Yu Hsiao,
and Chan-Nan Lu., (2011). “Transmission System
Loadability Enhancement Study by Ordinal Optimization
Method”, IEEE Transactions on power systems, Vol. 26, No.
1., pp. 451-459.
[32]. Lai. LL, Ma JT, etal., (1997). “Improved genetic
algorithms for optimal power flow under both normal and
contingent operation states,” Electric Power Energy
Systems., Vol. 19, No. 5., pp. 287-292.
[33]. Alsac O, Scott B., (1974). “Optimal power flow with
steady state security,” IEEE Transactions on Power
Apparatus Systems., Vol. 93, No. 3.
[34]. Kalyanmoy Deb, Samir Agarwal, Amrit Pratap, and T
Meyarivan., “A Fast Elitist Non-Dominated Sorting Genetic
Algorithm for Multi-Objective Optimization: NSGA-II,”
Kanpur Genetic Algorithms Laboratory, IIT Kanpur,
http://www.iitk.ac.in/kangal.
[35]. Srinivas. N, Deb. K., (1995). “Multi-Objective function
optimization using non-dominated sorting genetic
algorithms,” Evolutionary Computation, Vol.2, No. 3, pp.
221-248.
[36]. Shi. Y, Eberhart. R., (1998). “A modified particle
swarm optimizer,” Proceedings of the IEEE international
conference on evolutionary computation., Piscataway,
NJ: IEEE Press., pp. 69-73.
[37]. Eberhart. R, Shi. Y., (1998). “Computation between
genetic algorithms and particle swarm optimization,” Proceedings of the 7th annual conference on
evolutionary programming., Berlin: Springer; pp. 611-
618.
[38]. Caponetto. R, Fortuna. L, Fazzino. S, Xibilia. M.G.,
(2003). “Chaotic sequences to improve the performance
of evolutionary algorithms,” IEEE Trans. Evol. Comput., Vol.
7, No. 3, pp. 289-304.
[39]. Jong-Bae Park, Yun-Won Jeong, Hyun-Houng Kim
and Joong-Rin Shin., (2006). “An Improved Particle Swarm
Optimization for Economic Dispatch with Valve-Point
Effect,” International Journal of Innovations in Energy
Systems and Power., Vol. 1, No. 1., pp. 1-7.
[40]. J.S. Dhillon, S.C. Parti, D.P. Kothari, (1993).
“Stochastic economic emission load dispatch,” Electric
Power Syst. Res., Vol. 26., pp. 179-186.
[41]. O. Alsac, B. Stott., (1973). “Optimal Load Flow with
steady state security,” IEEE PES summer meeting &
EHV/UHV conference., July, pp. 745-751.
[42]. M.A. Abido., (2002). “Optimal power flow using Tabu
Search Algorithm,” Electric Power Components and
Systems, Vol. 30., pp. 469-483.
[43]. M.A. Abido., (2002). “Optimal power flow using
particle swarm optimization,” Electric Power and Energy
Systems, Vol. 24., pp. 563-571.