References
[1]. Boone, J.M., Nelson, T. R.,Lindfors, K.,
K.,&Seibert, J.
A., (2001), Dedicated breast CT: Radiation dose and
image quality evaluation, Radiology, Vol. 221, pp.
657–667.
[2]. Borghoff, U., &Pareschi, R., (1998), Information
technology for knowledge management, Berlin:
Springer-Verlag.
[3]. Bose, R., (2003), Knowledge management-enabled health
care management systems: capabilities,
infrastructure, and decision-support, Expert Systems with
Applications, Vol. 24(1), pp. 59-71.
[4]. Chang,C. H.,Sibala,J. L., Gallagher, J. H.,et al.,
(1977), Computed tomography of the breast: A
preliminary report, Radiology, Vol. 124, pp. 827–829.
[5]. Chen, B.&Ning, R., (2002), Cone-beam volume CT
breast imaging: Feasibility study, Med. Phys, Vol. 29, pp.
755–770.
[6]. Davenport, T. H., Harri, J. G., &Kohli, A. K.,
(2001), How
do they know their customers so well? MIT Sloan
Management Review, Vol. 42(2), pp. 63-73.
[7]. Davenport, T. H., &Prusak, L., (1998), Working
knowledge: how organizations manage what they know,
Boston: Harvard Business School.
[8]. Drucker, P., (1993), Post-Capitalist Society, New
York:
Harper Collins. Lorsch, J. W., (1986), Managing culture: the
invisible barrier to strategic change. California
Management Journal, Vol. 28(2), pp. 95-109.
[9]. Nonaka, I., & Takeuchi, H., (1995). The
knowledgecreating
company, New York: Oxford University Press.
[10]. Moore, T. Wu. R. H.,&Kopans, D. B., (2006),
Voting
strategy for artifact reduction in digital breast
tomosynthesis, Med. Phys, Vol. 33, pp. 2461–2471.
[11]. Moore, T. Wu. R. H., Rafferty, E.A.,&Kopans, D.
B.,
(2004), A comparison of reconstruction algorithms for
breast tomosynthesis, Med. Phys,Vol. 31, pp. 2636–2647.
[12]. Niklason,L. T., Christian,B. T.,NiklasonL. E.,et
al.,
(1997), Digital tomosynthesis in breast imaging,
Radiology, Vol. 205, pp. 399–406.
[13]. O'Leary, D., (1998), Knowledge management
systems: converting and connecting. IEEE Intelligent
Systems, Vol. 13(3), pp. 30-33.
[14]. Rakowski, J. T.,&Dennis, M. J.,(2006), A
comparison
of reconstruction algorithms for C-arm mammography
tomosynthesis, Med. Phys, Vol. 33, pp. 3018– 3032.
[15]. Raptopoulos,V.,Baum,J. K.,Hochman,M.,Karellas,
A., et al., (1996), High resolution CT mammography of
surgical biopsy specimens, J. Comput. Assist. Tomogr, Vol.
20, pp. 179–184.
[16]. xSimon, H. A., Egidi, M., &Marris, R., (1992),
Economics, bounded rationality, and the cognitive
revolution. Aldershot, UK: Elgar.
[17]. Spender, J. C., (1996), Making knowledge the basis
of a dynamical theory of the firm. Strategic Management
Journal, Vol. 17(Special Issue), pp. 45-62.
[18]. Stewart, T. Wu. A., Stanton, M.et al., (2003),
Tomographic mammography using a limited number of
low-dose cone-beam projection images, Med. Phys, Vol.
30, pp. 365–380.
[19]. Suryanarayanan, S., Karellas, A.,Vedantham, S.et
al., (2000), Comparison of tomosynthesis methods used
with digital mammography, Acad. Radiol, Vol. 7, pp.
1085–1097.
[20]. Sveiby, K. E., (2001), A knowledge-based theory of
the firm to guide in strategy formulation. Journal of
Intellectual Capital, Vol. 2(4), pp. 344-358.
[21]. Szulanski, G., (1996), Exploring internal
stickiness:
impediments to the transfer of best practice within the firm. Strategic
Management Journal, Vol. 17(Special
Issue), pp. 27-44.
[22]. Wickramasinghe, N., (2000), IS/IT as a tool to
achieve
goal alignment in the health care industry. International
Journal of Healthcare Technology and Management,
Vol. 2(1), pp. 163-180.
[23]. Wigg, K, (1993), Knowledge management
foundations. Arlington, VA: Schema.
[24]. Yin, R. K., (2003), Case study research: design and
methods (3rd ed.), Thousand Oaks, CA: Sage.
[25]. Zack, M. H., (2003), Rethinking the knowledge-based
organization. MIT Sloan Management Review, Vol. 44(4),
pp. 66-71.
[26]. Zhang, Y., Chan, H. P.,Sahiner, B., Wei,
J.,Goodsitt, M.
M.,Hadjiiski, L. M.,Ge, J.,&Zhou, C.,(2006), A
comparative study of limited-angle conebeam
reconstruction methods for breast tomosynthesis, Med.
Phys, Vol. 33, pp. 3781–3795.