References
[1]. Tze Fun Chan., Keli Shi (2011). “Applied
Intelligent
Control of Induction Motor Drives”. IEEE Willey Press.
[2]. P.C. Krause (2000). Analysis of Electrical Machinery
and
Drives System. IEEE Willey Press.
[3]. Ned Mohan (2001). Advanced Electric Drives:
Analysis,
Control Modeling using Simulink. MNPERE Publication.
[4]. K.L.Shi, T.F.Chan, Y. K. Wong and S. L .HO (1999).
Modeling and simulation of the three phase induction
motor Using SIMULINK. Int.J. Elect. Engg. Educ, Vol. 36, pp.
163–172. doi. 10.1109/IEMDC.1997.604326.
[5]. P. M.Menghal, A Jaya Laxmi and N.Mukhesh (2014).
Dynamic Simulation of Induction Motor Drive using Artificial
I n tel l i gen t Con trol l er. I EEE I n t. Con f. . Con trol ,
Instrumentation, Energy and Communication (CIEC),
pp.301-305. doi: 10.1109/CIEC.2014.6959098.
[6]. P.M Menghal, and A Jaya Laxmi (2014). “Neural
Network Based Dynamic Performance of Induction Motor
Drives. Springer Journal of Advances in Intelligent Systems
and Computing, Vol. 259, pp. 539-551. doi: 10.1007/978-
81-322-1768-8_48.
[7]. P M Menghal, and A Jaya Laxmi (2014). “Dynamic
Performance of Induction Motor Drive Using Hybrid
Controller. Journal of Automation & Systems Engineering
Vol.8-1, Pp. 40-50.
[8]. P. M. Menghal and Dr. A. Jaya Laxmi (2014).
“Artificial
Intelligent Control of Induction Motor Drives”. i-manager's
Journal on Instrumentation and Control Engineering, 2(1),
Nov-Jan, 2014, Print ISSN 2321-113X, E-ISSN 2321-1148, pp.
9-22.
[9]. P M Menghal, and A.Jaya Laxmi (2012).
“Artificial
Intelligence Based Dynamic Simulation of Induction Motor
Drives”. IOSR Journal of Electrical and Electronics
Engineering (IOSR-JEEE), Vol.3(5), 37-45.doi: 10.9790/
1676-0353745.
[10]. P M Menghal, and A. Jaya Laxmi (2013).
“Adaptive
Neuro Fuzzy based Dynamic Simulation of Induction Motor
Drives”. IEEE Int. conf. Fuzzy Systems, 1-8.doi:10.1109/FUZZIEEE.
2013.6622452.
[11]. P M Menghal, and A Jaya Laxmi (2013). Neural
Network based Dynamic Simulation of Induction Motor
Drives. IEEE Int. conf. Power, Energy & Control,566-571.doi
:10.1109/ICPEC.2013.6527722.
[12]. P M .Menghal, and A Jaya Laxmi (2012). Adaptive
Neuro Fuzzy Interference (ANFIS) based simulation of
Induction motor drive. Int. Review on Modeling and
Simulation (IRMOS), 5(5), 2007-2016.
[13]. M. Nasir Uddin, and Muhammad Hafeez (2012).
FLCBased
DTC Scheme to Improve the Dynamic Performance
of an IM Drive. IEEE Trans. Ind. Appl, 823-831.doi:
10.1109/TIA.2011.2181287.
[14]. M. Nasir Uddin, and Hao Wen (2007). Development of
a Self-Tuned Neuro-Fuzzy Controller for Induction Motor
Drives. IEEE Trans Ind. App, 1108-1116.doi :
10.1109/TIA.2007.900472.
[15]. M Nasir Uddin, and Tawfik S. Radwan et al. (2002).
Performance of Fuzzy logic based indirect vector control
for induction motor drive, IEEE Trans. Ind. Appl, Vol.
38(5),1219-1225.doi: 10.1109/TIA.2002.802990.
[16]. Besir Dandil, Muammer Gokbulut Fikrat Ata (2005).
A
PI Type Fuzzy –Neural Controller for Induction Motor Drives.
Journal of Appl. Sci., Vol. 5(7), pp. 1286-1291.doi:
10.3923/jas.2005.
[17]. Rajesh Kumar, R. A. Gupta Rajesh S. Surjuse
(2009).
“Adaptive Neuro-Fuzzy Speed Controller for Vector
Controlled Induction Motor Drive”. Asian Power Electro.
Journal, Vol. 3(1), pp. 8-14. doi:14.79e41505757a2a8cab.
[18]. Mouloud Azzedine Denai and Sid Ahmed Attia
(2002). Fuzzy and Neural Control of an Induction Motor, Int.
J. Appl. Math. Computer. Sci., Vol. 12 (2), pp. 8-14.
doi:10.1.1.135.303.
[19]. Bimal K. Bose (2007). Neural Network Applications
in
Power Electronics and Motor Drives - An Introduction and
Perspective. IEEE Trans. Ind. Electronics, Vol. 54(1), pp. 14-
33.doi: 10.1109/TIE.2006.888683.
[20]. Uddin, M.N.,Huang, Z.R. et al (2007). “A
Simplified Self-
Tuned Neuro-Fuzzy Controller Based Speed Control of an
Induction Motor Drive”. IEEE Power Engineering Society
General Meeting, Vol. 1-8.doi: 10.1109/PES.2007.385720.
[21]. M Nasir Uddin, Tawfik S. Radwan and Azizur Rahman
(2002). Performance Of Fuzzy Logic based Indirect Vector
Control for Induction Motor Drive. IEEE Trans on industry
application, Vol. 38(5), pp.1219-1225. doi: 10.1109/
IAS.2000.881989.