References
[1]. Niu, L., Li, W (2006). Colour Edge Detection Based on
Direction Information Measure, Proc 6th World congress
on Intelligent Control and Automation, China.
[2]. Evans, A.N., (2006). “Liu, X.U. A Morphological
Gradient Approach to Color Edge Detection” IEEE Trans
Image Processing, Vol. 15, No. 6. pp. 1454-63.
[3]. Geusebroek, J-M., (2003). Smeulders, A.W.M., van de
Weijer, J. Fast Anisotropic Gauss Filtering IEEE Trans Image
Processing, Vol. 12, No.8. pp. 938-943.
[4]. Serra,J.Image (1982). “Analysis and Mathematical
Morphology, Vol I. Academic Press, London.
[5]. Frank Y Shi (2008). “Mathematical morphology
fundamentals & applications” CRC press.
[6]. Ampoule, E., Lebvre, S. (2007). A comparative study
on multivariate mathematical morphology. Pattern
Recognition, Vol. 40, No.11, pp.2914-2929.
[7]. Han bury A., Serra, and J. (2001). “Morphological
operators on the unit circles operators on the unit circle”.
IEEE Transactions on Image Processing, Vol.10, No.12, pp.
1842–1850.
[8]. Gomila, C., Meyer, F. (1999). “Levelings in vector
spaces”. In Proceedings of the IEEE, Conference on
Image Processing, Kobe, Japan. Vol. 2, pp.929-933.
[9]. Chen, Q., Zhou, C., Luo, J., Ming, Dfast (2004). “Segmentation of high-resolution satellite approach”. In
Proceedings of the IWCIA, Auckland, New Zealand
621–630.
[10]. Garrido, L., Salembier, P., Garcia, and D. Extensive
(1998). “Operators in partition lattices for image
sequence analysis”. Signal Processing, Vol. 66, No. 2, pp.
157–180.
[11]. Angelo, J Serra, J (2006). Modeling and
segmentation of colour images in polar representations.
Image and Vision Computing, (doi:10.1016/j. imavis.07.
018). Vol. 25, pp. 475-495.
[12]. http:// www.cs.sfu.ca/ ~stella/ papers/ blairthesis/
main/node24.html# eqdiffusion.
[13]. B.Sridhar, Dr.K.V.V.S.Reddy, (2013). “Architectural
distortion model for breast cancer detection based on
Mathematical morphology and Active contours”, IJETTCS
Vol. 2, No. 2, pp. 474-479.
[14]. B.Sridhar Dr. K.V.V.S.Reddy (2013). 'Efficient
computer aided system based on mathematical
morphology and higher order partial differential
equations for breast cancer detection ' CNC 234-239.
[15]. Joachim Weickert (1998). “Anisotropic Diffusion in
Image Processing” Joachim Weickert, B.G. Teubner
Stuttgart publications.
[16]. Z.Wang and A.C.Bovik (2002). “A universal image
quality index”, IEEE signal processing Lett. Vol. 9, No. 3,
pp.81-84.
[17]. Zhou Wang, Alan Conrad Bovik, and P.Simoncelli
(2004). “Image quality assessment:from error visibility to structural similarity ”, IEEE transaction and image
processing, Vol:13, No. 4, pp. 1-14.
[18]. C.Tsiotsios, M.Petruon (2012). On the choice of the
parameters for anisotropic diffusion in image processing,
Elsevier pattern recognition http://dx.doi.org/10.1016/
j.patcog.11.012.
[19]. Mayo, P., Rodenas, F., and Verdu, G., (2004).
"Comparing methods to denoise mammographic
images," Proc. of the 26th Annual Intl. Conference of the
Engineering in Medicine and Biology Society (EMBC) Vol.
1, pp. 247-250.
[20]. Mekle, R., Laine, A.F., Smith, S., Singer, C.,
Koenigsberg, T., (2000). "Evaluation of a multiscale
enhancement protocol for digital mammography," Proc.
of the Wavelet Applications in Signal and Image
Processing VIII, San Diego, CA, USA, Vol. 4119, pp. 1038-
1049.
[21]. Baeg, S. and Kehtarnavaz, N., (2000). "Texture
based classification of mass abnormalities in
mammograms," Proc. of the 13th IEEE Symposium on
Computer-Based Medical Systems (CBMS), Houston, TX,
Vol. 1, pp. 163-168.
[22]. Peyman rahmati, Ghassan Hamarneh,Doron
Nussbaun and Andy Adler (2010). “A new preprocessing
in mammograms”, Lecturer Notes Computer Science,
Vol. 6134, pp. 585-592.
[23]. Ovidiu Ghita,Paulf Whelan (2010) .“ A new GVFbased
image enhancement formulation for use in the
presence of mixed noise” Elsevier Journal of Pattern
Reorganization, Vol. 43, No.8, pp. 2646-2658.