References
[1]. Abbasy, N. H., & Ismail, H. M. (2009). A unified
approach for the optimal PMU location for power system
state estimation. Power Systems, IEEE Transactions, Vol.24,
No.2, pp.806-813.
[2]. Ahmadi, A., Alinejad-Beromi, Y., & Moradi, M. (2011).
Optimal PMU placement for power system observability
using binary particle swarm optimization and considering
measurement redundancy. Expert Systems with
Applications, Vol.38, No.6, pp.7263-7269.
[3]. Aminifar, F., Lucas, C., Khodaei, A., & Fotuhi-
Firuzabad, M. (2009). Optimal placement of phasor
measurement units using immunity genetic algorithm.
Power Delivery, IEEE Transactions, Vol.24, No.3, pp.1014-
1020.
[4]. Aminifar, F., Khodaei, A., Fotuhi-Firuzabad, M., &
Shahidehpour, M. (2010). Contingency-constrained PMU
placement in power networks. Power Systems, IEEE
Transactions, Vol.25, No.1, pp.516-523.
[5]. Baldwin, T. L., Mili, L., BoisenJr, M. B., & Adapa, R.
(1993). Power system observability with minimal phasor measurement placement. Power Systems, IEEE
Transactions, Vol.8, No.2, pp.707-715.
[6]. Basu, M. (2008). Dynamic economic emission
dispatch using nondominated sorting genetic algorithm-
II. International Journal of Electrical Power & Energy
Systems, Vol.30, No.2, pp.140-149.
[7]. Chakrabarti, S., & Kyriakides, E. (2008). Optimal
placement of phasor measurement units for power
system observability. Power Systems, IEEE Transactions,
Vol.23, No.3, pp.1433-1440.
[8]. Chakrabarti, S., Venayagamoorthy, G. K., &
Kyriakides, E. (2008, December). PMU placement for
power system observability using binary particle swarm
optimization. In Power Engineering Conference, 2008.
AUPEC'08. Australasian Universities. pp. 1-5). IEEE.
[9]. Chakrabarti, S., Kyriakides, E., &Eliades, D. G. (2009).
Placement of synchronized measurements for power
system observability. Power Delivery, IEEE Transactions,
Vol.24, No.1, pp.12-19.
[10]. Chang, C. L. (2010). A modified VIKOR method for
multiple criteria analysis. Environmental monitoring and
assessment, Vol.168, pp.1-4, pp.339-344.
[11]. Christie, R. (1999). Power System Test Archive, Aug.
[12]. Chunhua, P., & Xuesong, X. (2008, April). A hybrid
algorithm based on immune BPSO and N-1 principle for
PMU multi-objective optimization placement. In Electric
Utility Deregulation and Restructuring and Power
Technologies, 2008. DRPT 2008. Third International
Conference, pp. 610-614, IEEE.
[13]. de Almeida, M. C., Garcia, A. V., & Asada, E. N.
(2012). Regularized least squares power system state
estimation. Power Systems, IEEE Transactions, Vol.27,
No.1, pp.290-297.
[14]. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M.
T. (2002). A fast and elitist multiobjective genetic
algorithm: NSGA-II. Evolutionary Computation, IEEE
Transactions, Vol.6, No.2, pp.182-197.
[15]. Do CouttoFilho, M. B., da Silva, A. L., Cantera, J. C.,
& da Silva, R. A. (1989, May). Information debugging for
real-time power systems monitoring. In IEE Proceedings C (Generation, Transmission and Distribution), Vol. 136, No.
3, pp. 145-152. IET Digital Library.
[16]. Enshaee, A., Hooshmand, R. A., & Fesharaki, F. H.
(2012). A new method for optimal placement of phasor
measurement units to maintain full network observability
under various contingencies. Electric Power Systems
Research, Vol.89, pp.1-10.
[17]. Firouzjah, K. G., Sheikholeslami, A., & Barforoushi, T.
(2012). Multi-objective allocation of measuring system
based on binary particle swarm optimization. Frontiers of
Electrical and Electronic Engineering, Vol.7, No.4,
pp.399-415.
[18]. Gou, B. (2008). Optimal placement of PMUs by
integer linear programming. IEEE Transactions on power
systems, Vol.23, No.3, pp.1525-1526.
[19]. Hajian, M., Ranjbar, A. M., Amraee, T., & Shirani, A. R.
(2007, November). Optimal placement of phasor
measurement units: particle swarm optimization
approach. In Intelligent Systems Applications to Power
Systems, 2007. ISAP 2007. International Conference, pp.
1-6. IEEE.
[20]. Jamuna, K., & Swarup, K. S. (2012). Multi-objective
biogeography based optimization for optimal PMU
placement. Applied Soft Computing, Vol.12, No.5,
pp.1503-1510.
[21]. Kavasseri, R., & Srinivasan, S. K. (2011). Joint
placement of phasor and power flow measurements for
observability of power systems. Power Systems, IEEE
Transactions, Vol.26, No.4, pp.1929-1936.
[22]. Khiabani, V., Yadav, O. P., & Kavasseri, R. (2011).
Reliability-based placement of phasor measurement
units in power systems. Proceedings of the Institution of
Mechanical Engineers, Part O: Journal of Risk and
Reliability, 1748006X11417959.
[23]. Khiabani, V., Kavasseri, R., & Farahmand, K. (2012).
A Reliability Based Multi-Objective Formulation for Optimal
PMU Placement. International Review on Modelling &
Simulations, Vol.5, No.4.
[24]. Khiabani, V., Erdem, E., Farahmand, K., & Nygard, K.
(2013, August). Genetic algorithm for instrument
placement in smart grid. In Nature and Biologically Inspired Computing (NaBIC), 2013 World Congress, pp.
214-219, IEEE.
[25]. Korkali, M., & Abur, A. (2009, July). Placement of
PMUs with channel limits. In Power & Energy Society
General Meeting, 2009.PES'09. IEEE, pp. 1-4, IEEE.
[26]. Koutsoukis, N. C., Manousakis, N. M., Georgilakis, P.
S., & Korres, G. N. (2013). Numerical observability method
for optimal phasor measurement units placement using
recursive Tabu search method. Generation, Transmission
& Distribution, IET, Vol.7, No.4, pp.347-356.
[27]. Li, D. H., Cao, Y. J., Jiang, Q. Y., & Zhan, Z. B. (2005).
Optimal Placement of Phasor Measurement Unit Based
on Multi-Objective Evolutionary Algorithm [J].Power
System Technology, Vol.22, 013.
[28]. Mahaei, S. M., & Hagh, M. T. (2012). Minimizing the
number of PMUs and their optimal placement in power
systems. Electric Power Systems Research, Vol.83, No.1,
pp.66-72.
[29]. Mahari, A., & Seyedi, H. (2013). Optimal PMU
placement for power system observability using BICA,
considering measurement redundancy. Electric Power
Systems Research, Vol.103, pp.78-85.
[30]. Manousakis, N. M., Korres, G. N., & Georgilakis, P. S.
(2012). Taxonomy of PMU placement methodologies.
Power Systems, IEEE Transactions, 27, No.2, pp.1070-
1077.
[31]. Manousakis, N. M., &Korres, G. N. (2013). A
Weighted Least Squares Algorithm for Optimal PMU
Placement. Power Systems, IEEE Transactions, Vol.28,
No.3, pp.3499-3500.
[32]. Marin, F. J., Garcia-Lagos, F., Joya, G., & Sandoval, F.
(2003). Genetic algorithms for optimal placement of
phasor measurement units in electrical networks.
Electronics Letters, Vol.39, No.19, pp.1403-1405.
[33]. Mazhari, S. M., Monsef, H., Lesani, H., & Fereidunian,
A. (2013). A multi-objective PMU placement method
considering measurement redundancy and observability
value under contingencies. IEEE Transactions on Power
Systems, Vol.28, No.3 pp.2136-2146.
[34]. Milosevic, B., & Begovic, M. (2003). Nondominated sorting genetic algorithm for optimal phasor
measurement placement. Power Systems, IEEE
Transactions, Vol.18, No.1, pp.69-75.
[35]. Nuqui, R. F., & Phadke, A. G. (2005). Phasor
measurement unit placement techniques for complete
and incomplete observability. Power Delivery, IEEE
Transactions, Vol.20, No.4, pp.2381-2388.
[36]. Opricovic, S., & Tzeng, G. H. (2004). Compromise
solution by MCDM methods: A comparative analysis of
VIKOR and TOPSIS. European Journal of Operational
Research, Vol.156, No.2, pp.445-455.
[37]. Peng, J., Sun, Y., & Wang, H. F. (2006). Optimal PMU
placement for full network observability using Tabu search
algorithm. International Journal of Electrical Power &
Energy Systems, Vol.28, No.4, pp.223-231.
[38]. Peng, C. H., Sun, H. J., & Guo, J. F. (2009). Nondominated
sorting differential evolution algorithm for
multi-objective optimal PMU placement. Control Theory &
Applications, Vol.10, No.007.
[39]. Peng, C., Sun, H., & Guo, J. (2010). Multi-objective
optimal PMU placement using a non-dominated sorting
differential evolution algorithm. International Journal of
Electrical Power & Energy Systems, Vol.32, No.8, pp.886-
892.
[40]. Phadke, A. G., & Thorp, J. S. (2008). Synchronized
phasor measurements and their applications. Springer.
[41]. Shahraeini, M., Ghazizadeh, M. S., & Javidi, M. H.
(2012). Co-optimal placement of measurement devices
and their related communication infrastructure in wide
area measurement systems. Smart Grid, IEEE
Transactions, Vol.3, No.2, pp.684-691.
[42]. Sodhi, R., Srivastava, S. C., & Singh, S. N. (2010).
Optimal PMU placement method for complete
topological and numerical observability of power system.
Electric Power Systems Research, Vol.80, No.9, pp.1154-
1159.
[43]. Sodhi, R., Srivastava, S. C., & Singh, S. N. (2011).
Multi-criteria decision-making approach for multistage
optimal placement of phasor measurement units.
Generation, Transmission & Distribution, IET, Vol.5, No.2,
pp.181-190.
[44]. Vedik, B., & Chandel, A. K. (2013, March). Optimal
placement of PMUs using differential evolution. In
Intelligent Systems and Signal Processing (ISSP), 2013
International Conference, pp. 17-22,. IEEE.
[45]. Xingang, W., Qian, A., Weihua, X., & Peng, H. (2009).
Multi-objective optimal energy management of
microgrid with distributed generation. Power System
Protection and Control, Vol.37, No.20, pp.79-83.