Synchronization of Circular Restricted Three Body Problem with Liu Hyper Chaotic System using a Robust Adaptive Sliding Mode Controller

Ayub Khan*, 0**
* Professor, Department of Mathematics, Jamia Millia Islamia, New Delhi, India.
** Assistant Professor, Department of General Requirements, College of Applied Sciences, Nizwa, Oman.
Periodicity:April - June'2014
DOI : https://doi.org/10.26634/jmat.3.2.3002

Abstract

In this computational study, the authors synchronize the Circular Restricted Three Body Problem (CRTBP) with Liu Hyper Chaotic System (LHCS) using a Robust Adaptive Sliding Mode Controller (RASMC) together with uncertainties, external disturbances and fully unknown parameters. A simple suitable sliding surface, which includes synchronization errors, is constructed and appropriate update laws are used to tackle the uncertainties, external disturbances and unknown parameters. All simulations to achieve the synchronization for the proposed technique for the two non-identical systems under consideration are being done using Mathematica.

Keywords

CRTBP, LHCS, RASMC, Synchronization.

How to Cite this Article?

Khan, A., and Shahzad, M. (2014). Synchronization of Circular Restricted Three Body Problem with Liu Hyper Chaotic System using a Robust Adaptive Sliding Mode Controller. i-manager’s Journal on Mathematics, 3(2), 22-29. https://doi.org/10.26634/jmat.3.2.3002

References

[1]. Pecora, L. M. & Carroll, T. L. (1990). Synchronization in Chaotic Systems, Phys. Rev. Lett. Vol 64, pp.821- 824.
[2]. Xiang, W. & Huangpu, Y. (2010). Second-order terminal sliding mode controller for a class of chaotic systems with unmatched uncertainties, Commun Nonlinear Sci Numer Simulat, Vol 15, pp.3241–3247.
[3]. Rafikov, M. & Balthazar, J. M. (2008). On control and synchronization in chaotic and hyperchaotic systems via linear feedback control, Commun Nonlinear Sci Numer Simulat, Vol 13, pp.1246–1255.
[4]. Bowong, S. (2007). Adaptive synchronization between two different chaotic dynamical systems, Commun Nonlinear Sci Numer Simulat, Vol 12, pp.976–985.
[5]. Chen, H., Sheu, G., Lin, Y. & Chen, C. (2009). Chaos synchronization between two different chaotic systems via nonlinear feedback control, Nonlinear Anal, Vol 70, pp.4393–4401.
[6]. Yassen, M. T. (2007). Controlling, synchronization and tracking chaotic Liu system using active backstepping design, Phys Lett A, Vol 360, pp.582–587.
[7]. Wang, F. & Liu, C. (2007). Synchronization of unified chaotic system based on passive control, Physica D, Vol 225, pp.55–60.
[8]. Yau, H. & Shieh, C. (2008). Chaos synchronization using fuzzy logic controller, Nonlinear Anal: RWA Vol 9, pp.1800–1810.
[9]. Chang, W. (2009). PID control for chaotic synchronization using particle swarm optimization, Chaos Soliton Fract, Vol 39, pp.910–917.
[10]. Sun, Y. (2009). Chaos synchronization of uncertain Genesio–Tesi chaotic systems with dead zone nonlinearity, Phys Lett A, Vol 373, pp.3273–3276.
[11]. Jianwen, F., Ling, H., Chen, X., Austin, F. & Geng, W. (2010). Synchronizing the noise-perturbed Genesio chaotic system by sliding mode control, Commun Nonlinear Sci Numer Simulat, Vol 15, pp.2546–2551.
[12]. Feki, M. (2009). Sliding mode control and synchronization of chaotic systems with parametric uncertainties, Chaos Soliton Fract, Vol 41, pp.1390–1400.
[13]. Lin, C., Peng, Y. & Lin, M. (2009). CMAC-based adaptive backstepping synchronization of uncertain chaotic systems, Chaos Soliton Fract ,Vol 42, pp.981–988.
[14]. Ahmadi, A. A. & Majd, V. J. (2009). Robust synchronization of a class of uncertain chaotic systems, Chaos Soliton Fract, Vol 42, pp.1092–1096.
[15]. Asheghan, M. M. & Beheshti, M. T. H. (2009). An LMI approach to robust synchronization of a class of chaotic systems with gain variations, Chaos Soliton Fract, Vol 42, pp.1106–1111.
[16]. Zhang, H. & Ma, X. (2004). Synchronization of uncertain chaotic systems with parameters perturbation via active control, Chaos Soliton Fract, Vol 21, pp.39–47.
[17]. Cai, N., Jing, Y. & Zhang, S. (2010). Modified projective synchronization of chaotic systems with disturbances via active sliding mode control, Commun Nonlinear Sci Numer Simulat, Vol 15, pp.1613–1620.
[18]. Kebriaei, H. & Yazdanpanah, M. J. (2010). Robust adaptive synchronization of different uncertain chaotic systems subject to input nonlinearity, Commun Nonlinear Sci Numer Simulat, Vol 15, pp.430–441.
[19]. Chen, C. (2009). Quadratic optimal neural fuzzy control for synchronization of uncertain chaotic systems, Expert Syst Appl, Vol 36, pp.11827–11835.
[20]. Li, W. & Chang, K. (2009). Robust synchronization of drive-response chaotic systems via adaptive sliding mode control, Chaos Soliton Fract, Vol 39, pp.2086–2092.
[21]. Wang, H., Han, Z., Xie, Q. & Zhang, W. (2009). Finite-time chaos synchronization of unified chaotic system with uncertain parameters, Commun Nonlinear Sci Numer Simulat, Vol 14, pp.2239–2247
[22]. Zhang, G., Liu, Z. & Zhang, J. (2008). Adaptive synchronization of a class of continuous chaotic systems with uncertain parameters, Phys Lett A, Vol 372, pp.447–450.
[23]. Ma, J., Zhang, A., Xia, Y. & Zhang, L. (2010). Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems, Appl Math Comput ,Vol 215, pp.3318–3326
[24]. El-Gohary A. (2006). Optimal synchronization of Rossler system with complete uncertain parameters, Chaos Soliton Fract, Vol 27, pp.345–355.
[25]. Hwang, E., Hyun, C., Kim, E. & Park, M. (2009). Fuzzy model based adaptive synchronization of uncertain chaotic systems: robust tracking control approach, Phys Lett A, Vol 373, pp.1935–1939.
[26]. Yassen, M.T. (2005). Adaptive synchronization of two different uncertain chaotic systems, Phys Lett A, Vol 337, pp.335–341.
[27]. Chen, X. & Lu, J. (2007). Adaptive synchronization of different chaotic systems with fully unknown parameters, Phys Lett A, Vol 364, pp.123–128.
[28]. Salarieh, H. & Shahrokhi, M. (2008). Adaptive synchronization of two different chaotic systems with time varying unknown parameters, Chaos Soliton Fract, Vol 37, pp.125–136.
[29]. Yan, J., Hung, M., Chiang, T. & Yang, Y. (2006). Robust synchronization of chaotic systems via adaptive sliding mode control, Phys Lett A, Vol 356, pp.220–225.
[30]. Aghababa, M. P. & Heydari, A. (2012). Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities, Applied Mathematical Modelling. Vol 36, pp.1639–1652.
[31]. Aghababa, M. P. & Akbari, M. E. (2012). A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances, Applied Mathematics and Computation, Vol 218, pp. 5757–5768.
[32]. Pourmahmood, M., Khanmohammadi, S. & Alizadeh, G. (2011). Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller, Commun Nonlinear Sci Numer Simulat, Vol 16, pp.2853–2868.
[33]. Wang C. & Ge S. S. (2001). Adaptive synchronization of uncertain chaotic systems via backstepping design, Chaos Soliton Fract, Vol 12, pp.1199–1206.
[34]. Khan, A. & Shahzad, M. (2013). Synchronization of Circular Restricted Three Body Problem with Lorenz Hyper Chaotic System using a Robust Adaptive Sliding Mode Controller, Complexity, Vol 18, pp.58-64.
[35]. Mohammad Shahzad (2014). Synchronization of Three Dimensional Cancer Model with Lorenz System Using A Robust Adaptive Sliding Mode Controller. i-manager's Journal on Mathematics, 3 (1), Jan-Mar 2014, Print ISSN 2277-5129, E-ISSN 2277-5137, pp. 27-34.
[36]. Szebehely, V. (1967). Theory of Orbits. Academic Press, San Diego.
[37]. Wang F. Q. & Liu C. X. (2006). Hyper chaos evolved from the Liu chaotic system. Chin. Phys. Vol 15, pp.963- 968.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.