References
[1]. Pecora, L. M. & Carroll, T. L. (1990).
Synchronization in Chaotic Systems, Phys. Rev. Lett. Vol 64, pp.821-
824.
[2]. Xiang, W. & Huangpu, Y. (2010). Second-order
terminal sliding mode controller for a class of chaotic systems with
unmatched uncertainties, Commun Nonlinear Sci Numer Simulat, Vol 15,
pp.3241–3247.
[3]. Rafikov, M. & Balthazar, J. M. (2008). On control
and synchronization in chaotic and hyperchaotic systems via linear
feedback control, Commun Nonlinear Sci Numer Simulat, Vol 13,
pp.1246–1255.
[4]. Bowong, S. (2007). Adaptive synchronization between
two different chaotic dynamical systems, Commun Nonlinear Sci
Numer Simulat, Vol 12, pp.976–985.
[5]. Chen, H., Sheu, G., Lin, Y. & Chen, C. (2009).
Chaos synchronization between two different chaotic systems via nonlinear
feedback control, Nonlinear Anal, Vol 70, pp.4393–4401.
[6]. Yassen, M. T. (2007). Controlling, synchronization
and tracking chaotic Liu system using active backstepping design, Phys
Lett A, Vol 360, pp.582–587.
[7]. Wang, F. & Liu, C. (2007). Synchronization of
unified chaotic system based on passive control, Physica D, Vol 225,
pp.55–60.
[8]. Yau, H. & Shieh, C. (2008). Chaos synchronization
using fuzzy logic controller, Nonlinear Anal: RWA Vol 9,
pp.1800–1810.
[9]. Chang, W. (2009). PID control for chaotic
synchronization using particle swarm optimization, Chaos Soliton Fract,
Vol 39,
pp.910–917.
[10]. Sun, Y. (2009). Chaos synchronization of uncertain
Genesio–Tesi chaotic systems with dead zone nonlinearity, Phys Lett
A, Vol 373, pp.3273–3276.
[11]. Jianwen, F., Ling, H., Chen, X., Austin, F. &
Geng, W. (2010). Synchronizing the noise-perturbed Genesio chaotic system
by sliding mode control, Commun Nonlinear Sci Numer Simulat, Vol 15,
pp.2546–2551.
[12]. Feki, M. (2009). Sliding mode control and
synchronization of chaotic systems with parametric uncertainties, Chaos
Soliton Fract, Vol 41, pp.1390–1400.
[13]. Lin, C., Peng, Y. & Lin, M. (2009). CMAC-based
adaptive backstepping synchronization of uncertain chaotic systems,
Chaos Soliton Fract ,Vol 42, pp.981–988.
[14]. Ahmadi, A. A. & Majd, V. J. (2009). Robust
synchronization of a class of uncertain chaotic systems, Chaos Soliton
Fract,
Vol 42, pp.1092–1096.
[15]. Asheghan, M. M. & Beheshti, M. T. H. (2009). An
LMI approach to robust synchronization of a class of chaotic systems
with gain variations, Chaos Soliton Fract, Vol 42,
pp.1106–1111.
[16]. Zhang, H. & Ma, X. (2004). Synchronization of
uncertain chaotic systems with parameters perturbation via active
control, Chaos Soliton Fract, Vol 21, pp.39–47.
[17]. Cai, N., Jing, Y. & Zhang, S. (2010). Modified
projective synchronization of chaotic systems with disturbances via
active
sliding mode control, Commun Nonlinear Sci Numer Simulat, Vol 15,
pp.1613–1620.
[18]. Kebriaei, H. & Yazdanpanah, M. J. (2010).
Robust adaptive synchronization of different uncertain chaotic systems
subject to input nonlinearity, Commun Nonlinear Sci Numer Simulat, Vol
15, pp.430–441.
[19]. Chen, C. (2009). Quadratic optimal neural fuzzy
control for synchronization of uncertain chaotic systems, Expert Syst
Appl, Vol 36, pp.11827–11835.
[20]. Li, W. & Chang, K. (2009). Robust
synchronization of drive-response chaotic systems via adaptive sliding
mode control,
Chaos Soliton Fract, Vol 39, pp.2086–2092.
[21]. Wang, H., Han, Z., Xie, Q. & Zhang, W. (2009).
Finite-time chaos synchronization of unified chaotic system with
uncertain parameters, Commun Nonlinear Sci Numer Simulat, Vol 14,
pp.2239–2247
[22]. Zhang, G., Liu, Z. & Zhang, J. (2008). Adaptive
synchronization of a class of continuous chaotic systems with uncertain
parameters, Phys Lett A, Vol 372, pp.447–450.
[23]. Ma, J., Zhang, A., Xia, Y. & Zhang, L. (2010).
Optimize design of adaptive synchronization controllers and parameter
observers in different hyperchaotic systems, Appl Math Comput ,Vol 215,
pp.3318–3326
[24]. El-Gohary A. (2006). Optimal synchronization of
Rossler system with complete uncertain parameters, Chaos Soliton
Fract, Vol 27, pp.345–355.
[25]. Hwang, E., Hyun, C., Kim, E. & Park, M. (2009).
Fuzzy model based adaptive synchronization of uncertain chaotic
systems: robust tracking control approach, Phys Lett A, Vol 373,
pp.1935–1939.
[26]. Yassen, M.T. (2005). Adaptive synchronization of
two different uncertain chaotic systems, Phys Lett A, Vol 337,
pp.335–341.
[27]. Chen, X. & Lu, J. (2007). Adaptive
synchronization of different chaotic systems with fully unknown
parameters, Phys Lett
A, Vol 364, pp.123–128.
[28]. Salarieh, H. & Shahrokhi, M. (2008). Adaptive
synchronization of two different chaotic systems with time varying
unknown parameters, Chaos Soliton Fract, Vol 37, pp.125–136.
[29]. Yan, J., Hung, M., Chiang, T. & Yang, Y.
(2006). Robust synchronization of chaotic systems via adaptive sliding
mode
control, Phys Lett A, Vol 356, pp.220–225.
[30]. Aghababa, M. P. & Heydari, A. (2012). Chaos
synchronization between two different chaotic systems with
uncertainties, external disturbances, unknown parameters and input
nonlinearities, Applied Mathematical Modelling. Vol
36, pp.1639–1652.
[31]. Aghababa, M. P. & Akbari, M. E. (2012). A
chattering-free robust adaptive sliding mode controller for
synchronization of
two different chaotic systems with unknown uncertainties and external
disturbances, Applied Mathematics and
Computation, Vol 218, pp. 5757–5768.
[32]. Pourmahmood, M., Khanmohammadi, S. & Alizadeh,
G. (2011). Synchronization of two different uncertain chaotic
systems with unknown parameters using a robust adaptive sliding mode
controller, Commun Nonlinear Sci Numer Simulat,
Vol 16, pp.2853–2868.
[33]. Wang C. & Ge S. S. (2001). Adaptive
synchronization of uncertain chaotic systems via backstepping design,
Chaos
Soliton Fract, Vol 12, pp.1199–1206.
[34]. Khan, A. & Shahzad, M. (2013). Synchronization
of Circular Restricted Three Body Problem with Lorenz Hyper Chaotic
System using a Robust Adaptive Sliding Mode Controller, Complexity, Vol
18, pp.58-64.
[35]. Mohammad Shahzad (2014). Synchronization of Three
Dimensional Cancer Model with Lorenz System Using A Robust
Adaptive Sliding Mode Controller. i-manager's Journal on Mathematics, 3
(1), Jan-Mar 2014, Print ISSN 2277-5129, E-ISSN
2277-5137, pp. 27-34.
[36]. Szebehely, V. (1967). Theory of Orbits. Academic
Press, San Diego.
[37]. Wang F. Q. & Liu C. X. (2006). Hyper chaos
evolved from the Liu chaotic system. Chin. Phys. Vol 15, pp.963-
968.