An improved DC Characteristics of Quantum Dot Transistor under Illumination

V. Vijayakumar*, R. Seshasayanan**
* Research Scholar, Department of Electronics and Communication Engineering, Sathyabama University, Chennai, India.
** Professor, Anna University, Chennai, India.
Periodicity:March - May'2014
DOI : https://doi.org/10.26634/jcir.2.2.2976

Abstract

The DC performance of the Quantum Dot Transistor under illumination is studied and presented in this paper. A device structure consisting of Quantum Dots(QD) in the GaAs layer is considered for illumination. The photoconductive effect in the GaAs and QD layer which increases the 2DEG Channel electron concentration is considered. The I-V Characteristics of Quantum Dot Transistor, under dark and illumination condition have been calculated, plotted and discussed. The Transfer Characteristics of Quantum Dot Transistor without and with illumination, Optical Response of Quantum Dot Transistor, and sheet concentration of the device is also calculated, plotted and discussed.

Keywords

DC Illumination, Quantum Dot Transistor(QDT), Photoconductive Effect, 2DEG, Sheet Concentration, Gallium Arsenide (GaAs)

How to Cite this Article?

Vijayakumar, V. and Seshasayanan, R. (2014). An improved DC Characteristics of Quantum Dot Transistor under Illumination. i-manager’s Journal on Circuits and Systems, 2(2), 26-32. https://doi.org/10.26634/jcir.2.2.2976

References

[1]. G.E. Moore, (2003). “No Exponential Is Forever: But Can Be Delayed!,” Vol. 1, 2-10, pp. 20-23.
[2]. P. M. Zeitzoff and J. E. Chung, (2005). “A Perspective From the 2003 ITRS,” IEEE Circuits & Devices, Vol.21, No.1,pp. 4-15.
[3]. L. Kouwenhoven and C. Marcus, (1998). ”Quantum Dots,” Physics World, Vol. 11, No.6, pp. 35-36.
[4]. L. I. Glazman, (2000). “Single Electron Tunneling,” Journal of Low Temperature Physics, Vol. 118, No. 5-6, pp. 247-269.
[5]. J.M. Zamanillo, C. Navarro, C. Pérez-Vega, A. Mediavilla, and A. Tazón (2001). “Large Signal Model Predicts Dynamic Behavior of GaAs MESFET Under Optical Illumination” Microwave and Optical Technology Letters, Vol. 29 No.1, pp 25-31.
[6]. J.M. Zamanillo, C. Navarro, J. Sáiz-Ipiña, C.Pérez- Vega and A. Mediavilla. (2001). “New Large Signal Electrical Model of GaAs MESFET Under Optical Illumination”. European Microwave Week, GaAs 2001 proceedings, pp.167- 170,.
[7]. B. E. Kardynal, A. J. Shields, N. S. Beattie, I. Farrer, K. Cooper, and D. A Ritchie, (2004). “Low-Noise Photon Counting With a Radio-Frequency Quantum-Dot Field- Effect Transistor,” Applied Physics Letters, Vol. 84, No. 3, pp. 419-421.
[8]. A Rogalski, (2003). “Quantum well photoconductors in infrared detector technology”. Journal of Applied Physics, 93(8):4355-4391.
[ 9 ] . M V. R y z h i i, (2003).”Intersubband Infrared Photodetectors”, World Scientific, Vol. 27.
[10]. Lee, J. S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, (2011). D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nature Nanotech, Vol.6, pp.348–352.
[11]. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. (2011). Hot carrier transport and photocurrent response in graphene. Nano Lett. Vol.11, pp.4688–4692 .
[12]. Konstantatos, G. & Sargent, E. H. (2010). Nanostructured materials for photon detection. Nature Nanotech. Vol.5, pp.391–400.
[13]. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. (2010). Graphene photonics and optoelectronics. Nature Photon. Vol. 4, pp.611–622.
[14]. Mueller, T., Xia, F. & Avouris, P. (2010). Graphene photodetectors for high-speed optical communications. Nature Photon. Vol.4, pp.297–301.
[15]. V. I. Klimov, (2010). Nanocrystal Quantum Dots, p. 485, CRC Press, Taylor and Francis Group, LLC .
[16] KF Brennan and J Haralson, Invited, (2000). ”Review- Superlattice and multiquantum well avlanche photodetectors:Physics, concepts and performance”, Superlatice and Microstructures, 28(2), pp77-104.
[17]. Heinzel, (2003). Mesoscopic Electronics in Solid State Nanostructures (Wiley-VCH, Weinheim.
[18]. X. H. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, (2005). “A Resonant Tunneling Quantum-Dot Infrared Photodetector,” IEEE Journal of Quantum Electronics, Vol. 41, No. 7, pp. 974-979.
[19]. V. Kannan, P. E. Sankarnarayanan, S. K. Srivasta, (2004). “Improved Optical Response of MODFET under backside Illumination” Photonics 2004,Cochin.
[20]. N. Marjanovic, Th.B. Singh, G. Dennler, S. Gunes, H. Neugebauer, N. S. Sariciftci, R. Schwodiauer, (2006). “Photo response of organic field-effect transistors based on conjugated polymer/fullerence blends”, 1566-1199/$ - see front matter @ 2006 Elsevier B. V. All rights reserved. Doi:10.1016/j.orgel.2006.01.002.
[21]. S.M.Sze, (1981). “Physics of Semiconductor Devices”, 2nd ed., NewYork:Wiley.
[22]. R.N.Simons, (1987). “Microwave Performance of an optically controlled AlGaAs/GaAs High Electron Mobility Transistor and GaAs MESFET ”, IEEE Trans. on MTT, Vol. MTT-35, pp1444-1455.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.