References
[1]. G.E. Moore, (2003). “No Exponential Is Forever: But
Can Be Delayed!,” Vol. 1, 2-10, pp. 20-23.
[2]. P. M. Zeitzoff and J. E. Chung, (2005). “A Perspective
From the 2003 ITRS,” IEEE Circuits & Devices, Vol.21,
No.1,pp. 4-15.
[3]. L. Kouwenhoven and C. Marcus, (1998). ”Quantum
Dots,” Physics World, Vol. 11, No.6, pp. 35-36.
[4]. L. I. Glazman, (2000). “Single Electron Tunneling,”
Journal of Low Temperature Physics, Vol. 118, No. 5-6, pp.
247-269.
[5]. J.M. Zamanillo, C. Navarro, C. Pérez-Vega, A.
Mediavilla, and A. Tazón (2001). “Large Signal Model
Predicts Dynamic Behavior of GaAs MESFET Under Optical
Illumination” Microwave and Optical Technology Letters,
Vol. 29 No.1, pp 25-31.
[6]. J.M. Zamanillo, C. Navarro, J. Sáiz-Ipiña, C.Pérez-
Vega and A. Mediavilla. (2001). “New Large Signal
Electrical Model of GaAs MESFET Under Optical
Illumination”. European Microwave Week, GaAs 2001
proceedings, pp.167- 170,.
[7]. B. E. Kardynal, A. J. Shields, N. S. Beattie, I. Farrer, K.
Cooper, and D. A Ritchie, (2004). “Low-Noise Photon
Counting With a Radio-Frequency Quantum-Dot Field-
Effect Transistor,” Applied Physics Letters, Vol. 84, No. 3, pp.
419-421.
[8]. A Rogalski, (2003). “Quantum well photoconductors in
infrared detector technology”. Journal of Applied Physics,
93(8):4355-4391.
[ 9 ] . M V. R y z h i i, (2003).”Intersubband Infrared
Photodetectors”, World Scientific, Vol. 27.
[10]. Lee, J. S., Kovalenko, M. V., Huang, J., Chung, D. S. &
Talapin, (2011). D. V. Band-like transport, high electron
mobility and high photoconductivity in all-inorganic
nanocrystal arrays. Nature Nanotech, Vol.6, pp.348–352.
[11]. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. (2011). Hot carrier transport and photocurrent response
in graphene. Nano Lett. Vol.11, pp.4688–4692 .
[12]. Konstantatos, G. & Sargent, E. H. (2010).
Nanostructured materials for photon detection. Nature
Nanotech. Vol.5, pp.391–400.
[13]. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C.
(2010). Graphene photonics and optoelectronics. Nature
Photon. Vol. 4, pp.611–622.
[14]. Mueller, T., Xia, F. & Avouris, P. (2010). Graphene
photodetectors for high-speed optical communications.
Nature Photon. Vol.4, pp.297–301.
[15]. V. I. Klimov, (2010). Nanocrystal Quantum Dots, p. 485,
CRC Press, Taylor and Francis Group, LLC .
[16] KF Brennan and J Haralson, Invited, (2000). ”Review-
Superlattice and multiquantum well avlanche
photodetectors:Physics, concepts and performance”,
Superlatice and Microstructures, 28(2), pp77-104.
[17]. Heinzel, (2003). Mesoscopic Electronics in Solid State
Nanostructures (Wiley-VCH, Weinheim.
[18]. X. H. Su, S. Chakrabarti, P. Bhattacharya, G.
Ariyawansa, and A. G. U. Perera, (2005). “A Resonant
Tunneling Quantum-Dot Infrared Photodetector,” IEEE Journal
of Quantum Electronics, Vol. 41, No. 7, pp. 974-979.
[19]. V. Kannan, P. E. Sankarnarayanan, S. K. Srivasta,
(2004). “Improved Optical Response of MODFET under
backside Illumination” Photonics 2004,Cochin.
[20]. N. Marjanovic, Th.B. Singh, G. Dennler, S. Gunes, H.
Neugebauer, N. S. Sariciftci, R. Schwodiauer, (2006).
“Photo response of organic field-effect transistors based on
conjugated polymer/fullerence blends”, 1566-1199/$ -
see front matter @ 2006 Elsevier B. V. All rights reserved.
Doi:10.1016/j.orgel.2006.01.002.
[21]. S.M.Sze, (1981). “Physics of Semiconductor Devices”,
2nd ed., NewYork:Wiley.
[22]. R.N.Simons, (1987). “Microwave Performance of an
optically controlled AlGaAs/GaAs High Electron Mobility
Transistor and GaAs MESFET ”, IEEE Trans. on MTT, Vol. MTT-35,
pp1444-1455.