References
[1]. Neeraj Sharma, and Lalit M. Aggarwal. (2010).
Automated medical image segmentation techniques. J
Med Phys. Vol.35, No.1, pp3–14. doi: 10.4103/0971-
6203.58777 PMCID: PMC2825001.
[2]. Balafar, Mohd Ali, Abdul Rahman Ramli, Iqbal
Saripan, M., and Syamsiah Mashohor (2010). “Review of
brain MRI image segmentation methods”. Artificial
Intelligence Review Vol.33(3), pp.261-274. Retrieved
from http://www.via.cornell.edu/ec
e578/project/2014/g1/paper8.pdf.
[3]. Mehmet Sezgin, & Bulent Sankur. (2004). “Survey over
image thresholding techniques and quantitative
performance evaluation”. Journal of Electronic Imaging,
Vol.13(1), pp.146–165.
[4]. Lee, S.U., Chung, S.Y., and Park, R.H. (1990). “A
Comparative Performance Study of Several Global
Thresholding Techniques for Segmentation”. Graphical
Models and Image Processing, Vol 52, pp.171-190.
[5]. Weszka, J.S., and Rosenfeld, A. (1978). “Threshold
evaluation techniques”. IEEE Trans. Systems, Man and
Cybernetics, SMC-Vol.8(8), pp.627-629.
[6]. Sahoo, P.K., Soltani, S., and Wong, A.K.C. (1998). “A
survey of thresholding techniques”. Computer Vision,
Graphics, and Image Processing, Vol. 41, pp.233-260.
[7]. Salem Saleh Al-amri, Kalyankar, N.V., and Khamitkar
S.D. (May 2010). “Image Segmentation by Using Threshold Techniques”. Journal of Computing, Vol.2(5).
ISSN 2151-9617.
[8]. Adams, R., & Bischof, L. (1994). Seeded region
growing. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol.16, pp.641-647.
[9]. Mehnert, & Jackway, P. (1997). “An improved seeded
region growing algorithm”. Pattern Recognition Letters,
Vol.18, pp.1065-1071.
[10]. Manousakas N., Undrill PE., Cameron G.G., et al.
(1998). “Split-and-merge segmentation of magnetic
resonance medical images: Performance evaluation
and extension to three dimensions”. Comp Biomed Res,
Vol .31: pp.393–412.
[11]. Judith MS Prewitt. (1970). “Object enhancement
and extraction”, Volume 75. Academic Press, New York.
[12]. John Canny. (1986). “A computational approach to
edge detection”. IEEE Transactions on, Pattern Analysis
and Machine Intelligence, PAMI-8(6), pp.679–698.
[13]. BoyKob, Y.,and Funka Lea, G. (2006). “Graph cuts
and efficient n-d image segmentation”. International
Journal of Computer Vision, Vol. 69 No(1), pp.109-131.
[14]. Li, S. Z. (1995). “Markov Random Field Modeling in
Computer Vision”. Berlin, Germany: Springer-Verlag.
[15]. Wells III, W. M., Grimson,W.E.L., Kikinis,R., and Jolesz,
F.A. (1996). Adaptive Seg mentation of MRI data. IEEE
Trans. Med. Imag., Vol.15, 429-442.
[16]. Pappas, T.N. (1992). “An Adaptive Clustering
Algorithm for Image Segmentation”. IEEE Trans. Signal
Proc., Vol.40, pp.901-914.
[17]. Kass, M., Witkin, A., and Terzopolous, D. (1987).
“ Snakes: Active Contour models. Proceedings,
International Conference on Computer Vision”, IEEE
Computing Society Press.
[18]. Cohen, L., & Cohen, I. (1993). “Finite element
methods for active contour models and balloons for 2-D
and 3-D images”. IEEE Trans. Pattern Analysis and
Machine Intelligence, Vol.15(11), pp.1131-1147.
Retrieved from https:// www.ceremade.dauphine.fr
/~cohen/mypapers/CohenCohenPAMI93.pdf.
[19]. Ronfard, R. (1994). “Region-based strategies for active contour models”. Int. J. Comput. Vis. Vol.13(2),
pp.229–251.
[20]. Zhu, S.C., and Yuille, A. (1996). “Region competition:
unifying snakes, region growing, and Bayes/MDL for
multiband image segmentation”. IEEE Trans. Pattern
Analysis and Machine Intelligence, Vol.18(9),
pp.884–900.
[21]. Caselles, V, Catte, F, Coll, T. & Dibos, F. (1993). “A
geometric model for active contours”. Numerische
Mathematik, Vol.66(1), pp.1–31. Retrieved from
http://www.dtic.upf.edu/~vcaselles/papers_v/Geometri
MACConf.pdf.
[22]. Malladi, R., Sethian, J.A., & Vemuri, B.C. (1995).
“Shape modeling with front propagation: a level set
approach”. IEEE Trans. Pattern Analysis and Machine
Intelligence, Vol.17(2), pp.158– 175. Retrieved from
http://homes.cs.washington.edu/~seitz/course/590SS/p
ami_fronts.pdf.
[23]. Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser,
R., & Lorenz, C. (2009). “Automated model-based
vertebra detection, identification, and segmentation in
CT images”. Medical Image Analysis, Vol.13(1), pp.471-8.
[24]. Poon, C.S., & Braun M. (1997). “Image segmentation
by a deformable contour model incorporating region
analysis”. Physics Medicine and Biology, Vol.42 (9),
pp.1833-41. doi:10.1088/0031-9155/42/9/013.
[25]. Xu,, C., Pham, D.L., and Prince, J. L. (2000). “Image
Segmentation Using Deformable Models”. Handbook of
Medical Imaging, SPIE Press, Vol.2(1),pp. 447 – 514.
[26]. Cootes, T. F., Hill, A., Taylor, C.J., and Haslam, J.
(1994). “Use of active shape models for locating
structures in medical images”. Image and Vision
Computing, Vol.12(6), pp.355 -366. Retrieved from
http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/ivc95.pdf.
[27]. Cootes, T.F., Taylor, C.J., Cooper, D.H., and Graham,
J. (1995). “Active shape models–their training and
application”.ComputerVisionandImage
Understanding, Vol.61(1), pp.38-59. Retrieved from
http://www.inf.unideb.hu/~sajolevente/papers/aam/199
5.%20cviu95%20-%20active%20shape%20models. Pdf
[28]. Xian Fan, Yiqiang Zhan and Gerardo Hermosillo
Valadez. (2009). “A Comparison study of atlas based
image segmentation and the advantage of multi-atlas
based on shape clustering”. Proc. SPIE 7259, Medical
Imaging. doi:10.1117/12.814157.
[29]. Aljabar, P., Heckemann, R., Hammers, A., Hajnal,
J.V., and Rueckert, D. (2009). “Multi-Atlas Based
Segmentation of Brain Images: Atlas Selection and Its
Effect on Accuracy”. NeuroImage, Vol.46(3), pp.726-
739.Retrived from http://www.doc.ic.ac.uk/~pa100/pubs/ aljabarNeuroImage 2009-selection.pdf.
[30]. Rohlfing, T., Robert Brandt, Randolf Menzel,and
Calvin R. Maurer, Jr. (2004). “Evaluation of atlas selection
strategies for atlas-based image segmentation with
application to confocal microscopy images of bee
brains ”. NeuroImage, 21(4), 1428–1442, doi:
10.1016/j.neuroimage.2003.11.010.
[31]. Zitova, B., and Flusser, J. (2003). “Image registration
methods: a survey”. Image and Vision Computing,
Vol.21(11), pp.977–1000.
[32]. Warfield, S. K., Zou, K.H., and Wells, W.M. (2004).
“Simultaneous truth and performance level estimation
(STAPLE): an algorithm for the validation of image
segmentation”. IEEE Transactions on Medical Imaging,
Vol.23(7), pp. 903–921.
[33]. Rohlfing and C. R. Maurer Jr. (2007). “Shape-based
averaging”, IEEE Transactions on Image Processing,
Vol.16(1), pp.153–161.
[34]. M. R. Sabuncu, B. T. T. Yeo, K. Van Leemput, B. Fischl,
and P. Golland, “A generative model for image
segmentation based on label fusion,” IEEE Transactions
on Medical Imaging, Vol. 29, No. 10, Article ID 5487420,
pp. 1714–1729, 2010.
[35]. Hongzhi Wang, J., Suh, W., Das, S.R., Pluta, J.B.,
Craige, C., and Yushkevich, P.A. (2012). “Multi-Atlas
Segmentation with Joint Label Fusion”. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(4), 611-
623. doi:10.1109/TPAMI.2012.143.
[36]. http://placid.nlm.nih.gov/user/48/
[37]. Advanced Normalization Tools (ANTs) [Online].
Available : http://sourceforge.net/projects/advants/.
[38]. Ruben Cardenes, Meritxell Bach, Ying-Veronica
Chi, Ioannis Marras, Rodrigo de Luis, Mats Anderson,
Peter Cashman and Matthieu Bultelle. (2007). “Multimodal Evaluation Method for Medical Image
Segmentation”. Computer Analysis of Images and
Patterns, 4673, pp 229-236.