Synchronization Of Three Dimensional Cancer Model With Lorenz System Using A Robust Adaptive Sliding Mode Controller

0*
Department of General Requirements, College of Applied Sciences, Nizwa, Oman.
Periodicity:January - March'2014
DOI : https://doi.org/10.26634/jmat.3.1.2940

Abstract

This paper investigates the synchronization of chaotic Three Dimensional Cancer Model (TDCM) with Lorenz System (LS) using a Robust Adaptive Sliding Mode Controller (RASMC) together with uncertainties, external disturbances and fully unknown parameters. The technique used for synchronization is based on simple suitable sliding surface, which includes synchronization errors and appropriate update laws to tackle the uncertainties, external disturbances and unknown parameters. All simulations to achieve the synchronization for the proposed technique for the two non-identical systems under consideration are being done using Mathematica.

Keywords

TDCM, LS, Synchronization, RASMC.

How to Cite this Article?

Shahzad, M. (2014). Synchronization of Three Dimensional Cancer Model with Lorenz System using A Robust Adaptive Sliding Mode Controller. i-manager’s Journal on Mathematics, 3(1), 27-34. https://doi.org/10.26634/jmat.3.1.2940

References

[1]. Fujisaka, H. & Yamada, T. (1983). Stability Theory of Synchronized Motion in Coupled-Oscillator Systems, Prog. Theor. Phys., Vol.69 (1), pp.32-37.
[2]. Pecora, L. M. & Carroll, T. L. (1990). Synchronization in Chaotic Systems, Phys. Rev. Lett., Vol.64, pp.821-824.
[3]. Xiang, W. & Huangpu, Y. (2010). Second-order terminal sliding mode controller for a class of chaotic systems with unmatched uncertainties, Commun Nonlinear Sci Numer Simulat., Vol.15, pp.3241–3247.
[4]. Rafikov, M. & Balthazar, J. M. (2008). On control and synchronization in chaotic and hyperchaotic systems via linear feedback control, Commun Nonlinear Sci Numer Simulat., Vol.13, pp.1246–1255.
[5]. Bowong, S. (2007). Adaptive synchronization between two different chaotic dynamical systems, Commun Nonlinear Sci Numer Simulat., Vol.12, pp.976–985.
[6]. Chen, H., Sheu, G., Lin, Y. & Chen, C. (2009). Chaos synchronization between two different chaotic systems via nonlinear feedback control, Nonlinear Anal., Vol.70, pp.4393–4401.
[7]. Yassen, M. T. (2007). Controlling, synchronization and tracking chaotic Liu system using active backstepping design, Phys Lett A. Vol.360, pp.582–587.
[8]. Wang, F. & Liu, C. (2007). Synchronization of unified chaotic system based on passive control, Physica D Vol.225, pp.55–60.
[9]. Yau, H. & Shieh, C. (2008). Chaos synchronization using fuzzy logic controller, Nonlinear Anal: RWA. Vol.9, pp.1800–1810.
[10]. Chang, W. (2009). PID control for chaotic synchronization using particle swarm optimization, Chaos Soliton Fract. Vol.39, pp.910–917.
[11]. Sun, Y. (2009). Chaos synchronization of uncertain Genesio–Tesi chaotic systems with dead zone nonlinearity, Phys Lett A. Vol.373, pp.3273–3276.
[12]. Jianwen, F., Ling, H., Chen, X., Austin, F. & Geng, W. (2010). Synchronizing the noise-perturbed Genesio chaotic system by sliding mode control, Commun Nonlinear Sci Numer Simulat., Vol.15, pp.2546–2551.
[13]. Feki, M. (2009). Sliding mode control and synchronization of chaotic systems with parametric uncertainties, Chaos Soliton Fract., Vol.41, pp.1390–1400.
[14]. Lin, C., Peng, Y. & Lin, M. (2009). CMAC-based adaptive backstepping synchronization of uncertain chaotic systems, Chaos Soliton Fract., Vol.42, pp.981–988.
[15]. Ahmadi, A. A. & Majd, V. J. (2009). Robust synchronization of a class of uncertain chaotic systems, Chaos Soliton Fract. Vol.42, pp.1092–1096.
[16]. Asheghan, M. M. & Beheshti, M. T. H. (2009). An LMI approach to robust synchronization of a class of chaotic systems with gain variations, Chaos Soliton Fract., Vol.42, pp.1106–1111.
[17]. Zhang, H. & Ma, X. (2004). Synchronization of uncertain chaotic systems with parameters perturbation via active control, Chaos Soliton Fract. Vol.21, pp.39–47.
[18]. Cai, N., Jing, Y. & Zhang, S. (2010). Modified projective synchronization of chaotic systems with disturbances via active sliding mode control, Commun Nonlinear Sci Numer Simulat. Vol.15, pp.1613–1620.
[19]. Kebriaei, H. & Yazdanpanah, M. J. (2010). Robust adaptive synchronization of different uncertain chaotic systems subject to input nonlinearity, Commun Nonlinear Sci Numer Simulat. Vol.15, pp.430–441.
[20]. Chen, C. (2009). Quadratic optimal neural fuzzy control for synchronization of uncertain chaotic systems, Expert Syst Appl., Vol.36, pp.11827–11835.
[21]. Li, W. & Chang, K. (2009). Robust synchronization of drive-response chaotic systems via adaptive sliding mode control, Chaos Soliton Fract. Vol.39, pp.2086–2092.
[22]. Wang, H., Han, Z., Xie, Q. & Zhang, W. (2009). Finite-time chaos synchronization of unified chaotic system with uncertain parameters, Commun Nonlinear Sci Numer Simulat. Vol.14, pp.2239–2247.
[23]. Zhang, G., Liu, Z. & Zhang, J. (2008). Adaptive synchronization of a class of continuous chaotic systems with uncertain parameters, Phys Lett A. Vol.372, pp.447–450.
[24]. Ma, J., Zhang, A., Xia, Y. & Zhang, L. (2010). Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems, Appl Math Comput., Vol.215, pp.3318–3326.
[25]. El-Gohary A. (2006). Optimal synchronization of Rossler system with complete uncertain parameters, Chaos Soliton Fract. Vol.27, pp.345–355.
[26]. Hwang, E., Hyun, C., Kim, E. & Park, M. (2009). Fuzzy model based adaptive synchronization of uncertain chaotic systems: robust tracking control approach, Phys Lett A. Vol.373, pp.1935–1939.
[27]. Yassen, M.T. (2005). Adaptive synchronization of two different uncertain chaotic systems, Phys Lett A. Vol.337, pp.335–341.
[28]. Chen, X. & Lu, J. (2007). Adaptive synchronization of different chaotic systems with fully unknown parameters, Phys Lett A. Vol.364, pp.123–128.
[29]. Salarieh, H. & Shahrokhi, M. (2008). Adaptive synchronization of two different chaotic systems with time varying unknown parameters, Chaos Soliton Fract. Vol.37, pp.125–136.
[30]. Yan, J., Hung, M., Chiang, T. & Yang, Y. (2006). Robust synchronization of chaotic systems via adaptive sliding mode control, Phys Lett A. Vol.356, pp.220–225.
[31]. Wang, C. & Ge, S. S. (2001). Adaptive synchronization of uncertain chaotic systems via backstepping design, Chaos Soliton Fract. Vol.12, pp.1199–1206.
[32]. Aghababa, M. P. & Heydari, A. (2012). Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities, Applied Mathematical Modelling. Vol.36, pp.1639–1652.
[33]. Aghababa, M. P. & Akbari, M. E. (2012). A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances, Applied Mathematics and Computation., Vol.218, pp.5757–5768.
[34]. Pourmahmood, M., Khanmohammadi, S. & Alizadeh, G. (2011). Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller, Commun Nonlinear Sci Numer Simulat. Vol.16, pp.2853–2868.
[35]. Itik, M. & Banks, S. P. (2010). Chaos in a three dimensional cancer model, IJBC., Vol.20, pp.71-79.
[36]. Kim, C. J. & Chwa, D. (2011). Synchronization of the bi directionally coupled unified chaotic system via sum of squares method, Chaos., Vol.21, pp.013104.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.