References
[1]. Fujisaka, H. & Yamada, T. (1983). Stability
Theory of Synchronized Motion in Coupled-Oscillator Systems, Prog. Theor.
Phys., Vol.69 (1), pp.32-37.
[2]. Pecora, L. M. & Carroll, T. L. (1990).
Synchronization in Chaotic Systems, Phys. Rev. Lett., Vol.64, pp.821-824.
[3]. Xiang, W. & Huangpu, Y. (2010). Second-order
terminal sliding mode controller for a class of chaotic systems with
unmatched uncertainties, Commun Nonlinear Sci Numer Simulat., Vol.15,
pp.3241–3247.
[4]. Rafikov, M. & Balthazar, J. M. (2008). On control
and synchronization in chaotic and hyperchaotic systems via linear
feedback control, Commun Nonlinear Sci Numer Simulat., Vol.13,
pp.1246–1255.
[5]. Bowong, S. (2007). Adaptive synchronization between
two different chaotic dynamical systems, Commun Nonlinear
Sci Numer Simulat., Vol.12, pp.976–985.
[6]. Chen, H., Sheu, G., Lin, Y. & Chen, C. (2009).
Chaos synchronization between two different chaotic systems via
nonlinear feedback control, Nonlinear Anal., Vol.70, pp.4393–4401.
[7]. Yassen, M. T. (2007). Controlling, synchronization
and tracking chaotic Liu system using active backstepping design, Phys
Lett A. Vol.360, pp.582–587.
[8]. Wang, F. & Liu, C. (2007). Synchronization of
unified chaotic system based on passive control, Physica D Vol.225,
pp.55–60.
[9]. Yau, H. & Shieh, C. (2008). Chaos synchronization
using fuzzy logic controller, Nonlinear Anal: RWA. Vol.9,
pp.1800–1810.
[10]. Chang, W. (2009). PID control for chaotic
synchronization using particle swarm optimization, Chaos Soliton Fract.
Vol.39, pp.910–917.
[11]. Sun, Y. (2009). Chaos synchronization of uncertain
Genesio–Tesi chaotic systems with dead zone nonlinearity, Phys Lett
A. Vol.373, pp.3273–3276.
[12]. Jianwen, F., Ling, H., Chen, X., Austin, F. &
Geng, W. (2010). Synchronizing the noise-perturbed Genesio chaotic system
by sliding mode control, Commun Nonlinear Sci Numer Simulat., Vol.15,
pp.2546–2551.
[13]. Feki, M. (2009). Sliding mode control and
synchronization of chaotic systems with parametric uncertainties, Chaos
Soliton Fract., Vol.41, pp.1390–1400.
[14]. Lin, C., Peng, Y. & Lin, M. (2009). CMAC-based
adaptive backstepping synchronization of uncertain chaotic systems,
Chaos Soliton Fract., Vol.42, pp.981–988.
[15]. Ahmadi, A. A. & Majd, V. J. (2009). Robust
synchronization of a class of uncertain chaotic systems, Chaos Soliton
Fract.
Vol.42, pp.1092–1096.
[16]. Asheghan, M. M. & Beheshti, M. T. H. (2009). An
LMI approach to robust synchronization of a class of chaotic systems
with gain variations, Chaos Soliton Fract., Vol.42, pp.1106–1111.
[17]. Zhang, H. & Ma, X. (2004). Synchronization of
uncertain chaotic systems with parameters perturbation via active
control, Chaos Soliton Fract. Vol.21, pp.39–47.
[18]. Cai, N., Jing, Y. & Zhang, S. (2010). Modified
projective synchronization of chaotic systems with disturbances via
active
sliding mode control, Commun Nonlinear Sci Numer Simulat. Vol.15,
pp.1613–1620.
[19]. Kebriaei, H. & Yazdanpanah, M. J. (2010).
Robust adaptive synchronization of different uncertain chaotic systems
subject to input nonlinearity, Commun Nonlinear Sci Numer Simulat.
Vol.15, pp.430–441.
[20]. Chen, C. (2009). Quadratic optimal neural fuzzy
control for synchronization of uncertain chaotic systems, Expert Syst
Appl., Vol.36, pp.11827–11835.
[21]. Li, W. & Chang, K. (2009). Robust
synchronization of drive-response chaotic systems via adaptive sliding
mode control,
Chaos Soliton Fract. Vol.39, pp.2086–2092.
[22]. Wang, H., Han, Z., Xie, Q. & Zhang, W. (2009).
Finite-time chaos synchronization of unified chaotic system with
uncertain parameters, Commun Nonlinear Sci Numer Simulat. Vol.14,
pp.2239–2247.
[23]. Zhang, G., Liu, Z. & Zhang, J. (2008). Adaptive
synchronization of a class of continuous chaotic systems with uncertain
parameters, Phys Lett A. Vol.372, pp.447–450.
[24]. Ma, J., Zhang, A., Xia, Y. & Zhang, L. (2010).
Optimize design of adaptive synchronization controllers and parameter
observers in different hyperchaotic systems, Appl Math Comput., Vol.215,
pp.3318–3326.
[25]. El-Gohary A. (2006). Optimal synchronization of
Rossler system with complete uncertain parameters, Chaos Soliton
Fract. Vol.27, pp.345–355.
[26]. Hwang, E., Hyun, C., Kim, E. & Park, M. (2009).
Fuzzy model based adaptive synchronization of uncertain chaotic
systems: robust tracking control approach, Phys Lett A. Vol.373,
pp.1935–1939.
[27]. Yassen, M.T. (2005). Adaptive synchronization of
two different uncertain chaotic systems, Phys Lett A. Vol.337,
pp.335–341.
[28]. Chen, X. & Lu, J. (2007). Adaptive
synchronization of different chaotic systems with fully unknown
parameters, Phys Lett
A. Vol.364, pp.123–128.
[29]. Salarieh, H. & Shahrokhi, M. (2008). Adaptive
synchronization of two different chaotic systems with time varying
unknown parameters, Chaos Soliton Fract. Vol.37, pp.125–136.
[30]. Yan, J., Hung, M., Chiang, T. & Yang, Y.
(2006). Robust synchronization of chaotic systems via adaptive sliding
mode
control, Phys Lett A. Vol.356, pp.220–225.
[31]. Wang, C. & Ge, S. S. (2001). Adaptive
synchronization of uncertain chaotic systems via backstepping design,
Chaos
Soliton Fract. Vol.12, pp.1199–1206.
[32]. Aghababa, M. P. & Heydari, A. (2012). Chaos
synchronization between two different chaotic systems with
uncertainties, external disturbances, unknown parameters and input
nonlinearities, Applied Mathematical Modelling.
Vol.36, pp.1639–1652.
[33]. Aghababa, M. P. & Akbari, M. E. (2012). A
chattering-free robust adaptive sliding mode controller for
synchronization of
two different chaotic systems with unknown uncertainties and external
disturbances, Applied Mathematics and
Computation., Vol.218, pp.5757–5768.
[34]. Pourmahmood, M., Khanmohammadi, S. & Alizadeh,
G. (2011). Synchronization of two different uncertain chaotic
systems with unknown parameters using a robust adaptive sliding mode
controller, Commun Nonlinear Sci Numer Simulat.
Vol.16, pp.2853–2868.
[35]. Itik, M. & Banks, S. P. (2010). Chaos in a
three dimensional cancer model, IJBC., Vol.20, pp.71-79.
[36]. Kim, C. J. & Chwa, D. (2011). Synchronization
of the bi directionally coupled unified chaotic system via sum of squares
method, Chaos., Vol.21, pp.013104.