References
[1]. A. Chauhan, G. Mishra, and G. Kumar, (2011). “Survey
on Data mining Techniques in Intrusion Detection”, International Journal of Scientific & Engineering Research
Vol.2 Issue 7.
[2]. A. Sharma, A.K. Pujari, and K.K. Paliwal, (2007).
"Intrusion detection using text processing techniques with
a kernel based similarity measure", presented at
Computers & Security, pp.488-495.
[3]. Barton P Miller, David Koski, Cjin Pheow Lee,
Vivekananda Maganty, Ravi Murthy, Ajitkumar
Natarajan, Jeff Steidl. (1995). “Fuzz Revisited: A
Reexamination of the Reliability of UNIX Utilities and
Services”. Computer Sciences Department, University of
Wisconsin.
[4]. Dartigue, C., Hyun Ik Jang, Wenjun Zeng, (2009). “A
New Data-Mining Based Approach for Network Intrusion Detection”, 7th Annual Communication Networks and
Services Research Conference (CNSR), 11-13 May.
[5]. Eugene H Spafford. (1989). “The Internet Worm
Program: An Analysis”. In ACM Computer
Communication Review, 19(1), pages 17-57, Jan.
[6]. G. Qian, S. Sural, Y. Gu, and S. Pramanik, (2004).
"Similarity between Euclidean and cosine angle distance
for nearest neighbor queries", in Proc. SAC, pp.1232-
1237.
[7]. Gudadhe, M., Prasad, P., Wankhade, K., “A new data
mining based network Intrusion Detection model”
International Conference on Computer and
Communication Technology (ICCCT), 17-19 Sept
[8]. Guyon and A. Elisseeff, (2003). “An Introduction to
Variable and Feature Selection”, Journal of Machine
Learning Research 3, 1157-1182.
[9]. Jack Timofte and Praktiker Romania, (2007).
“Securing the Organization with Network Performance
Analysis”, Economy Informatics, 1-4.
[10]. Jiawei Han and. Micheline Kamber, (2011). “Data
Mining: Concepts and Techniques”, Morgan Kufmann, 2nd
edition, 3rd edition.
[11]. M. Hossain “Data Mining Approaches for Intrusion
Detection : Issues and Research Directions ” ,
http://www.cse.msstate.edu/~bridges/papers/iasted.
pdf.
[12]. Mohmood Husain, “Data Mining Approaches for
Intrusion Detection: Issues and Research Directions”,
Department of Computer Science, Mississippi State
University, MS 39762, USA.
[13]. P. Dokas, L. Ertoz, V. Kumar, A. Lazaevic. J. Srivastava,
and P. Tan, (2002). “Data Mining for Network Intrusion
Detection”, http://minds.cs.umn.edu/papers/nsf_ngdm_
.pdf.
[14]. P. Kumar, M.V. Rao, P.R. Krishna, and R.S. Bapi, (2005).
"Using Sub-sequence Information with kNN for
Classification of Sequential Data", in Proc. ICDCIT, pp.536-
546.
[15]. P. Kumar, P.R. Krishna, B. S Raju and T. M Padmaja,
(2008). “Advances in Classification of Sequence Data”,
Data Mining and Knowledge Discovery Technologies. IGI
Global, pp.143-174.
[16]. P. Kumar, R.S. Bapi, and P.R. Krishna, (2010). "A New
Similarity Metric for Sequential Data", presented at IJDWM,
pp.16-32.
[17]. S. Axelsson, (2000). “Intrusion Detection Systems: A
Survey and Taxonomy”. Technical Report 99-15, Chalmers
Univ. Marc h. http://citeseer.ist. psu .edu/viewdoc/summary?doi=1 0.1.1.1.6603.
[18]. S. Mukkamala et al. (2002). “Intrusion detection
using neural networks and support vector machines”, IEEE
IJCNN.
[19]. S. Terry Brugger, (2004). “Data Mining Methods for
Network Intrusion detection”, University of California,
Davis. http://www.mendeley.com/research/dataminingmethods-
for-network-intrusion-detection/.
[20]. S.J. Stolfo, W. Lee. P. Chan, W. Fan and E. Eskin,
(2001). “Data Mining – based Intrusion Detector: An
overview of the Columbia IDS Project” ACM SIGMOD
Records Vol. 30, Issue 4.
[21]. Steven E Smaha. (1988). Haystack: An Intrusion
Detection System. In Fourth Aerospace Computer
Security Applications Conference, pages 37-44, Tracor
Applied Science Inc., Austin, Texas, December.
[22]. Weili Han, Dianxun Shuai and Yujun Liu, (2004).
“Network Performance Analysis Based on a Computer
Network Model”, Lecture Notes in Computer Science,
Volume 3033/2004, 418-421, DOI: 10.1007/978-3-540-
24680-0_69.