References
[1]. Akaike, H. (1973). “Information Theory and an
Extension of the Maximum Likelihood Principle”. In Petrox,
B., Csaki, F. (Eds.), Second International Symposium on
Information Theory. Academiai Kiado, Budapest,
pp.267–281.
[2]. Akbilgic, O., Bozdogan, H. (2011). “Predictive Subset
Selection using Regression Trees and RBF Neural Networks
Hybridized with the Genetic Algorithm”. European Journal
of Pure and Applied Mathematics, 4 (4), pp.467–485.
[3]. Anderson, T., Fang, K. (1990). “Inference in
Multivariate Elliptically Contoured Distributions Based on
Maximum Likelihood”. In: Fang, K., Anderson, T. (Eds.),
Statistical Inference in Elliptically Contoured and Related
Distributions. Allerton Press, Inc., New York, pp. 201–216.
[4]. Andrews, D., Herzberg, A. (1985). “Data: A Collection
of Problems from Many Fields for the Student and
Research Worker”. Springer Series in Statistics. Springer-
Verlag, New York.
[5]. Andrews, J., McNicholas, P. (2011). “Mixtures of
Modified t-factor Analyzers for Model-based Clustering,
Classification, and Discriminant Analysis”. Journal of
Statistical Planning and Inference, Vol.141,
pp.1479–1486.
[6]. Banfield, J. D., Raftery, A. E. (1993). “Model-Based
Gaussian and Non-Gaussian Clustering”. Bio- metrics , 49
(3), pp. 803–812.
[7]. Bearse, P., Bozdogan, H., Schlottmann, A. (1997).
“Empirical Econometric Modelling of Food Consumption
Using a New Informational Complexity Approach”.
Journal of Applied Econometrics, Vol.12, pp.563–592.
[8]. Bhuyan, J., Raghavan, V., Elayavalli, V. (1991).
“Genetic Algorithm for Clustering with an Ordered
Representation”. In: 4th International Conference on
Genetic Algorithms. Morgan Kaufman, San Mateo, CA.
[9]. Biernacki, C., Celeux, G., Govaert, G. (1999). “An
improvement of the NEC criterion for assessing the
number of clusters in mixture model”. Pattern Recognition
Letters , Vol. 20, pp.267–272.
[10]. Biernacki, C., Celeux, G., Govaert, G. (2000).
“Assessing a mixture model for clustering with the
integrated completed likelihood”. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22 (7),
pp.719–725.
[11]. Bozdogan, H. (1981). “Multi-Sample Cluster Analysis
and Approaches to Validity Studies in Clustering
Individuals”. Ph.D. thesis, University of Illinois at Chicago.
[12]. Bozdogan, H. (1988). “ICOMP: A New Model-
Selection Criteria”. In Bock, H. (Ed.), Classification and
Related Methods of Data Analysis. North-Holland, pp.
599–608.
[13]. Bozdogan, H. (1994). “Mixture-Model Cluster Analysis
Using Model Selection Criteria and a New Informational
Measure of Complexity ”. In Bozdogan, H. (Ed.),
Proceedings of the First US/Japan Conference on the
Frontiers of Statistical Modeling: An Informational
Approach. Vol.2. Kluwerz Academic Publishers,
Dordrecht, Netherlands, pp. 69–113.
[14]. Bozdogan, H. (2000). “Akaike’s Information Criterion
and Recent Developments in Information Complexity”.
Journal of Mathematical Psychology, Vol. 44, pp.62–91.
[15]. Bozdogan, H., Haughton, D. (1998). “Informational
Complexity Criteria for Regression Models ” .
Computational Statistics and Data Analysis. Vol. 28,
pp.51–76.
[16]. Chatfield, C. (1995). “Model uncertainty, data
mining and statistical inference”. Journal of the Royal
Statistical Society, Series A 158, pp. 419–466.
[17]. Coker, E. U., Deniz Howe, E., Howe, J. A. (2011).
“Exploring the Performance of Information Criteria in
Multilevel Structural Equation Modeling”. Presented at the
8th International Amsterdam Multilevel Conference.
[18]. Day, N. (1969). “Estimating the Components of a
Mixture of Normal Distributions”. Biometrika, Vol. 56,
pp.463–474.
[19]. Dempster, A., Laird, N., Rubin, D. (1977). “Maximum
Likelihood from Incomplete Data via the EM Algorithm”.
Journal of the Royal Statistical Society. Series B
(Methodological) 39 (1), pp.1–38.
[20]. Deniz, E., Bozdogan, H., Katraggadda, S. (2011).
“Structural Equation Modeling (SEM) of Categorical and
Mixed-Data Using the Novel Gifi Transformations and
Information Complexity (ICOMP) Criterion”. Journal of the
School of Business Administration, 40 (1), pp.86–123.
[21]. Fang, K., Kotz, S., Ng, K. (1990). “Symmetric
Multivariate and Related Distributions”. Chapman and
Hall, New York.
[22]. Farrell, M., Mersereau, R., September. (2004).
“Estimation of Elliptically Contoured Mixture Models for
Hyperspectral Imaging Data”. In Geoscience and
Remote Sensing Symposium, IGARSS ’04. Vol. 4. IEEE
International, pp. 2412–2415.
[23] Figueiredo, M. A. T., Jain, A. K. (2002). “Unsupervised
learning of finite mixture models”. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(3),
pp.381–396.
[24]. Fonseca, J. R. S., Cardoso, M. G. M. S. (2007).
“Mixture-model cluster analysis using information
theoretical criteria”. Intelligent Data Analysis, 11(2),
pp.155–173.
[25]. Franczak, B., Browne, R., McNicholas, P. (2009).
“Mixtures of Shifted Asymmetric Laplace Distributions”.
[26]. Genton, M. (2004). “Skew-Elliptical Distributions and
Their Applications”. Chapman & Hall / CRC, Boca Raton,
Florida.
[27]. Holland, J. (1975). “Adaptation in Natural and
Artificial Systems”. University of Michigan Press, Ann Arbor,
Michigan.
[28]. Holland, J. (1992). “Genetic Algorithms”. Scientific
American, pp.66–72.
[29]. Holzmann, H., Munk, A., Gneiting, T. (2006).
“Identifiability of Finite Mixtues of Elliptical Distributions”. Scandinavian Journal of Statistics, 33 (4), pp.753–763.
[30]. Howe, J. A., Bozdogan, H. (2010). “Predictive Subset
VAR Modeling Using the Genetic Algorithm and
Information Complexity”. European Journal of Pure and
Applied Mathematics, 3 (3), pp.382–305.
[31]. Howe, J.A., Bozdogan, H. (2012). “Robust Mixture
Model Cluster Analysis Using Adaptive Kernels”. Journal of
Applied statistics . Retrieved from
http://www.tandfonline.com/doi/abs/10.1080/02664763.
2012.740630.
[32]. Karlis, D., Santourian, A. (2009). “Model-based
Clustering with Non-elliptically Contoured Distributions”.
Statistics and Computing, Vol. 19, pp.73–83.
[33]. Krishna, K., Murty, M. (1999). “Genetic K-Means
Algorithm”. IEEE Transactions on Systems, Man, and
Cybernetics - Part B: Cybernetics , 29 (3), pp.433–439.
[34]. Kullback, A., Leibler, R. (1951). “On Information and
Sufficiency”. Annals of Mathematical Statistics, Vol. 22,
pp.79–86.
[35]. Lee, S., McLachlan, G. (2012). “Finite Mixtures of
Multivariate Skew t-distributions: Some Recent and New
Results”. Statistics and Computing, pp.1–22. Retrieved
from http://dx.doi.org/10.1007/s11222-012-9362-4.
[36]. Lin, T. (2009). “Maximum Likelihood Estimation for
Multivariate Skew-normal Mixture Models”. Journal of
Multivariate Analysis, Vol. 100, pp.257–265.
[37]. Lin, T. (2010). “Robust Mixture Modeling Using
Multivariate Skew t Distribution”. Statistics and Computing,
Vol. 20, 343–356.
[38]. Liu, M. (2006). “Multivariate Nonnormal Regression
Models, Information Complexity, and Genetic
Algorithms: A Three Way Hybrid for Intelligent Data
Mining”. Ph.D. thesis, The University of Tennessee, Knoxville.
[39]. Liu, M., Bozdogan, H. (2008). “Multivariate
Regression Models with Power Exponential Random Errors
and Subset Selection Using Genetic Algorithms With
Information Complexity”. European Journal of Pure and
Applied Mathematics, 1 (1), pp.4–37.
[40]. Liu, S. (2002). “Local Influence in Multivariate
Elliptical Linear Regression Models”. Linear Algebra and its
Applications, Vol. 354, pp.159–174. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0024
379501005857.
[41]. Ma, J., Xu, L. (2005). “Asymptotic Convergence
Properties of the EM Algorithm with Respect to the Overlap
in the Mixture”. Neurocomputing, 68, 105–129.
[42]. MacQueen, J. (1967). “Some Methods for
Classification and Analysis of Multivariate Observations”.
In: Cam, L., Neyman, J. (Eds.), Proceedings of 5-th
Berkeley Symposium on Mathematical Statistics and
Probability. Vol. 1. University of California, Berkeley,
Berkeley, CA, pp. 281–297.
[43]. Mao, J., Jain, A. (1996). “A Self-Organizing Network
for Hyper ellipsoidal Clustering (HEC)”. IEEE Transactions on
Neural Networks, Vol. 7, pp.17–29.
[44]. McLachlan, G., Peel, D. (1998). “Robust Cluster
Analysis via Mixtures of Multivariate t- distributions”. In:
Amin, A., Dori, D., Pudil, P., Freeman, H. (Eds.), Lecture
Notes in Computer Science. Vol. 1451. Springer-Verlag,
Berlin, Germany, pp.658–666.
[45]. Pearson, K. (1894). “Contributions to the
Mathematical Theory of Evolution”. In: Phil. Trans. Royal
Society. Vol. 185A. pp.71–110.
[46]. Peters, B., Walker, H. (1978). “An Iterative Procedure
for Obtaining Maximum-Likelihood Estimates of the
Parameters for a Mixture of Normal Distributions”. SIAM
Journal on Applied Mathematics, 35 (2), pp.362–378.
[47]. Redner, R., Walker, H. (1984). “Mixture Densities,
Maximum Likelihood and the EM Algorithm”. SIAM Review,
26 (2), pp.195–239.
[48]. Schwarz, G. (1978). “Estimating the Dimension of a
Model”. Annals of Statistics, Vol. 6, pp.461–464.
[49]. Soltyk, S., Gupta, R. (2011). “Application of the multivariate skew normal mixture model with the EM
Algorithm to Value-at-Risk”. Presented at the 19th
International Congress on Modelling and Simulation.
[50]. Song, W., Feng, M., Wei, S., Shaowei, X. (1997). “The
Hyperellipsoidal Clustering Using Genetic Algorithm”. In:
1997 IEEE International Conference on Intelligent
Processing Systems. Beijing, China, pp. 592–596.
[51]. Sutradhar, B., Ali, M., (1986). “Estimation of the
Parameters of a Regression Model with a Multi- variate T
Error Variable”. Communication in Statistics, Theory and
Methods, 15 (2), pp.429–450.
[52]. Tipping, T., Biship, C. (1999). “Mixtures of Probabilistic
Principal Component Analysers”. Neural Computation,
Vol. 11, pp.443–482.
[53]. Van Emden, M. (1971). “An Analysis of Complexity. In:
Mathematical Centre Tracts”. Mathematisch Centrum.
Vol. 35.
[54]. Vrbik, I., McNicholas, P. (2012). “Analytic
Calculations for the EM Algorithm for Multivariate Skew tmixture
Models”. Statistics and Probability Letters, Vol. 82,
pp.1169–1174.
[55]. Wicker, J. 2006. “Applications of Modern Statistical
Methods to Analysis of Data in Physical Science”. Ph.D.
thesis, The University of Tennessee, Knoxville.
[56]. Wicker, J., Bozdogan, H., Bensmail, H. (2006). “A
Novel Generation Mixture-Model Cluster Analysis with
Genetic EM Algorithm and Information Complexity as the
Fitness Function”. Presented at the 10th International
Federation of Classification Societies (IFCS) Conference
on Data Science and Classification.
[57]. Wolf, J. 1963. “Object Cluster Analysis of Social
Areas”. Master’s thesis, University of California, Berkeley.
[58]. Xu, L., Jordan, M. (1996). “On Convergence
Properties of the EM Algorithm for Gaussian Mixtures”.
Neural Computation, Vol. 8, pp.129–151.