Spectroscopic Investigations of Anatase Titania Nanoparticles

K. Mohan Reddy*, Devi L.G.**, P.K. Sahoo***
* Department of Chemistry, College of Engineering Studies, University of Petroleum & Energy Studies, India.
** Central College, Department of Chemistry, Bangalore University, India.
*** Department of Mechanical Engineering, University of Petroleum and Energy Studies, India.
Periodicity:July - September'2014
DOI : https://doi.org/10.26634/jms.2.2.2816

Abstract

To investigate the relationship between the particle size and the Raman bands of TiO2 nanoparticles, two different size- selected samples of TiO2 nanoparticles were investigated using Transmission Electron Microscopy (TEM), High Resolution TEM (HRTEM), X-ray Photoelectron absorption Spectroscopy (XPS), and Fourier Transform Raman spectroscopy (FTRaman). In the Raman spectra, both broadening and shifts of the Raman bands with decreasing particle diameter were observed. In this paper, these Raman shifts are attributed to the effects of decreasing particle size on the force constants and vibrational amplitudes of the nearest neighbor bonds.

Keywords

Nanoparticles, Titania, Raman Spectroscopy, Resonance Raman Scattering

How to Cite this Article?

Reddy, K. M., Devi, L. G., & Sahoo, P. K. (2014). Spectroscopic Investigations of Anatase Titania Nanoparticles. i-manager's Journal on Material Science, 2(2), 14-17. https://doi.org/10.26634/jms.2.2.2816

References

[1]. A. Fujishima, K. Honda, (1972). “Electrochemical Photolysis of Water at a Semiconductor Electrode” Nature, Vol. 238, pp. 37 – 38, Jul.
[2]. H. Sun, Y. Bai, Y. Cheng, W. Jin, N. Xu, (2006). “Preparation and characterization of visible-light-driven carbon-sulfur-codoped TiO2photocatalysts” Ind. Eng. Chem. Res., Vol. 45, No. 14, pp. 4971- 4976. Jul.
[3]. S. Tojo, T. Tachikawa, M. Fujitsuka, T. Majima, (2008). “Iodine-Doped TiO2Photocatalysts: Correlation between band structure and mechanism ”J. Phys.Chem, Vol. 112, No. 38, pp.14948 – 14954, Aug.
[4]. M. S. Wong, S. W. Hsu, K. K. Rao, C. P. Kumar, (2008). “Influence of crystallinity and carbon content on visible light photocatalysis of carbon doped titntania thin films”, J. Mol.Catal. A: Chem., Vol. 279, pp.2–26, Jun.
[5]. H. Kato, A. Kudo, (2002). “Visible-Light-Response and Photo catalytic Activities of tio2 and srtio3 Photo catalysts Codoped with Antimony and Chromium”, J. Phys. Chem. B, Vol.106, No. 16, pp. 5029-5034, Apr.
[6]. T. Matsunaga, R. Tomoda, T. Nakajima, H.Wake, (1985). “Photo electrochemical sterilization of microbial cells by semiconductor powders”, FEMS Microbiol. Lett., Vol. 29, pp. 211-214, Aug.
[7]. V. Nadtochenko, N. Denisov, O. Sarjusiv, D. Gumy, C.Pulgarin, J. Kiwi, (2006). “Laser kinetic spectroscopy of the interfacial charge transfer”,J. Photochem. Photobiol. A Chem, Vol. 181, pp. 401-407,
[8]. A.G. Rincón and C. Pulgarin, (2004). “Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: implications in solar water disinfection,” Appl.Catal. B, Vol. 51, No. 4, pp. 283–302, Sep.
[9]. J. C. Yu, W. Ho, J. Lin, H. Yip, P.K. Wong, (2003). “Photocatalytic activity, antibacterial effect, and photoinducedhydrophilicity of TiO2 films coated on a stainless steel substrate”, Environ. Sci.Technol., Vol.37, pp. 2296 – 2301,
[10]. J. S. Hur, Y. Koh, (2002). “Bactericidal activity and water purification of im- mobilized TiO2 photocatalyst in bean sprout cultivation”, Biotechnol. Lett.,Vol.24, pp. 23-25,
[11]. E. Szabo-Bardos, H. Czili, A. Horvath, (2003). "Photocatalytic oxidation of oxalic. a TiO2 surface", J. Photochem. Photobiol. A: Chem., Vol.154, pp. 195–201,
[12] ErzsébetSzabó-Bárdos, Erika Pétervári, Viktória El-Zein, Attila Horváth: (2006). “Photocatalytic decomposition of aspartic acid over bare and silver deposited TiO2” J. Photochem. &Photobiol. A:Chem., Vol.184, No 1-2, pp. 221-227,
[13]. M.R. Hoffmann, S.C. Martin, W. Choi, D.W. Behnemann, 1995. “Environmental applications of semiconductor photocatalysis” Chem. Rev. Vol. 95, No. 1, pp. 69 – 96, Jan.
[14]. B. O'Regan and M. Grätzel, A Low-cost, (1991). “Highefficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films”, Nature, Vol. 353, pp. 737 – 740,
[15]. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, (1995). “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, Vol. 95, No. 1, pp. 69–96,
[16]. M. Anpo, H. Yamashita, (1996). in: M. Anpo (Ed.), Surface Photochemistry, Wiley Chichester, pp. 117-164.
[17]. P. V. Kamat, Chem. Rev. 93 267-300.
[18]. D.M. Blake, P.C. Maness, Z. Huang, E.J. Wolfrum, J. Huang, W.A.Jacoby, (1999). “Application of the photocatalytic chemistry of Titanium dioxide to disinfection and the killing of cancer cells” Sep.Purif. Methods Vol. 28, No. 1, pp 1-50,
[19]. L. Gomathi Devi, K. Mohan Reddy, (2010). “Enhanced photocatalytic activity of silver metallized TiO2 particles in the degradation of an azo dye methyl orange: Characterization and activity at different pH values” Appl. Surf. Sci. Vol. 256, No. 10, pp. 3116 – 3121, March
[20]. L. Gomathi Devi, K. Mohan Reddy, (2011). “Photocatalytic performance of silver TiO2: Role of electronic energy levels”Appl. Surf. Sci., Vol. 257, No. 15, pp. 6821–6828, May
[21]. O.A. Ileperuma et al, (1990). “Photocatalytic behavior of metal doped titanium dioxide.”, Appl. Catal. Vol. 62, No. 1, Jun., pages L1-L5.
[22]. K. Kalyanasundaram, and M. Graetzel, (2000). ”Photosensitization and Photocatalysis Using Inorganic and…”Coordin. Chem. Rev., Vol. 196, pp. 219,
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.