References
[1]. Snyder, WL. Powell, HD. Rayburn, C. (1987). “Dynamic
Programming approach to Unit Commitment”. IEEE Trans.
Power Systems, Vol.3, No.2, pp. 339-350.
[2]. Hsu. Su, Y.Y. Liang, C.C. Lin, C.J. Huang, C.T. (1991).
“Dynamic Security Constrained Multi-Area Unit
Commitment”. IEEE Trans. Power Systems, Vol.6, pp.1049-
1055.
[3]. Tao Li, Mohammad Shahidehpour (2005). “Price-
Based Unit Commitment: A Lagrangian Relaxation Versus
Mixed Integer Programming”. IEEE Trans. Power Systems,
Vol. 20, No. 4, pp. 2015-2025.
[4]. Samer Takriti. John R.Birge. (2000). Using Integer
Programming To Refine Lagrangian – Based Unit
Commitment Solutions. IEEE Trans. Power Systems, Vol.15,
No.1, pp.151-156.
[5]. Bakirtzis, A.G. Zoumas, C.E. (2000). “Lambda of
Lagrangian relaxation solution to unit commitment
problem”. IEEE Proc. Generation, Transmission and
Distribution, Vol.147, No.2, pp.131-136.
[6]. Chuan-ping Chang. Chih-wen Liu. Chun-chang Liu.:
(2000). “Unit Commitment by Lagrangian Relaxation and
Genetic Algorithm”. IEEE Trans. Power Systems, Vol.15,
No.2, pp.707-714.
[7]. Weerakorn Ongsakul, Nit Petcharaks (2004). “Unit
Commitment by Enhanced Adaptive Lagrangian
Relaxation”. IEEE Trans. Power Systems, Vol. 19, No. 1, pp.
620-628.
[8] Cohen A.I. Yoshimura, M. (1983). “A Branch and
Bound Algorithm for Unit Commitment”. IEEE Trans. Power
and Apparatus, Vol. 102, No.2, pp.444-451.
[9]. Ouyang, Z. Shahiderpour, S.M. (1990). “Short term
Unit Commitment Expert System”. International Journal of
Electrical Power System Research, Vol. 20, pp.1-13.
[10]. Su, C.C. Hsu, Y.Y. (1991). “Fuzzy Dynamic
Programming: an application to Unit Commitment”. IEEE
Trans. Power Systems, Vol.6, No.3, pp.1231-1237.
[11]. Anbazhagan S. and N. Kumarappan (2012). “A
neural network approach to day-ahead deregulated
electricity market prices Classification”, Electric Power
Systems Research, Vol.86, No.3, pp.140-150.
[12]. Senjyu, T. Saber, A.Y. Miyagi, T. Shimabukuro, K.
Urasaki, N. and Funabashi, T. (2005). “Fast Technique for
Unit Commitment by Genetic Algorithm Based on Unit
Clustering”. IEEE Proc. Generation, Transmission and
Distribution, Vol. 152, No.5, pp. 705-713.
[13]. Ioannis G. Damousis, Anastasios G. Bakirtzis, Petros
S. Dokopoulos (2004). “A Solution to the Unit Commitment
Problem Using Integer-Coded Genetic Algorithm”. IEEE
Trans. Power Systems, Vol. 19, No. 2, pp. 1165-1172.
[14]. Azadeh A. et al. (2012), “A New genetic algorithm
approach for optimizing bidding strategy viewpoint of
profit maximization of a generation company”, Expert
Systems with Applications, Vol. 39, No.4, pp.1565–1574.
[15]. Padhy, N.P. (2000). Unit Commitment using Hybrid
Models: “A Comparative Study for Dynamic Programming, Expert Systems, Fuzzy System and Genetic
Algorithm”. International Journal of Electrical Power &
Energy Systems, Vol.23, No.1, pp.827-836.
[16]. Zhuang, F. Galiana, F.D. (1990). “Unit Commitment
by Simulated Annealing”. IEEE Trans. On Power Systems,
Vol. 5, No.1, pp. 311-318.
[17]. Kirkpatrick, S. Gelatt, JR., C.D. Vecehi, M.P. (1983).
“Optimisation by Simulated Annealing”. Science, Vol.
220, pp. 4598.
[18]. Shokri Z. Selim. Alsultan, K. (1991). “A Simulated
Annealing Algorithm for the Clustering Problem”, Pattern
Recognition, Vol. 24, No. 10, pp. 1003-1008.
[19]. Mantawy, A.H. Youssef L. Abdel-Magid. Shokri Z.
Selim. (1998). “A Simulated Annealing Algorithm for Unit
Commitment”. IEEE Trans. On Power Systems, Vol. 13, No.
1, pp. 197-204.
[20]. Mantawy, A.H. Youssef L. Abdel-Magid, Shokri Z.
Selim. (1998). “A Unit Commitment By Tabu Search”. IEE
Proc. Generation, Transmission and Distribution, Vol. 145,
No. 1, pp.56-64.
[21]. Whei-Min Lin. Fu-Sheng Cheng. Ming-Tong Tsay.
(2002). “An Improved Tabu Search for Economic Dispatch
with Multiple Minima”. IEEE Trans. Power Systems, Vol.17,
No.1, pp.108-112.
[22]. Yong-Gang Wu. Chun-Ying Ho. Ding-Yi Wang.
(2000). “A Diploid Genetic Approach to Short-Term
Scheduling of Hydro-Thermal System”. IEEE Trans. Power
Systems, Vol.15, No.4, pp.1268-1274.
[23]. Ying-Yi Hong. Chih-Yuan Li.: (2002). “Genetic
Algorithm Based Economic Dispatch for Cogeneration
Units Considering Multiplant Multibuyer Wheeling”. IEEE
Trans. Power Systems, Vol.17, No.1, pp.134-140.
[24]. Mantawy, A.H. Youssef L. Abdel-Magid, Shokri Z. Selim. (1999). “Integrating Genetic Algorithm, Tabu
Search and Simulated Annealing For the Unit
Commitment Problem”. IEEE Tans. Power Systems, Vol.14,
No.3, pp.829-836.
[25]. Bai, X. Shahidehpour, M. (1996). “Hydro-Thermal
Scheduling by Tabu Search and Decomposition Method”.
IEEE Trans. Power Systems, Vol.11, No.2, pp.968-975.
[26]. Bai, X. Shahidehpour, M. (1997). “Extended
Neighbourhood Search Algorithm for Constrained Unit
Commitment”. International Journal of Electrical Power
and Energy Systems, Vol.19, No.5, pp.349-356.
[27]. Juste, K.A. Kita, H. Tanaka, E. Hasegawa, J. (1999).
An Evolutionary Programming Solution to the UC Problem.
IEEE Trans. Power Systems, Vol.14, No.4, pp.1452-1459.
[28]. Yang, H.T. Yang P.C. Huang, C.L. (1996).
“Evolutionary Programming Based Economic Dispatch for
Units with Non-smooth Fuel Cost Functions”. IEEE Trans.
Power Systems, Vol.11, No.1, pp.112-117.
[29]. Teuvo Kohonen, (1998). “An Introduction to Neural
Computing”. Neural Networks Journal, Vol. 1, No.1, pp. 3-
16.
[30]. Wood A.J. Woollenberg, B.F. (1996). “Power
Generation and control” 2nd Edn.. John Wiley and Sons,
New York.
[31]. Fogel, D.B.: (1995). “Evolutionary Computation,
Toward a New Philosophy of Machine Intelligence”. IEEE
Press, New York.
[32]. Back, T.: (1996). “Evolutionary Algorithms in Theory
and Practice”. Oxford University Press, New York.
[33]. Fogel, L.J. Owens, A.J. Walsh, M.J.: (1996). “Artificial
Intelligence through Simulated Evolution”. John Wiley &
Sons, New York.