References
[1]. Arai K.,&Andrie R. (2013, April).Gender Classification
with Human Gait Based on Skeleton Model. Proceedings
of International Conference on Information Technology,
113-118.
[2]. Bing L., Xiao C. L., & Bao L. L. (2012). Gender
classification by combining clothing, hair and facial
component classifiers. Neurocomputing, 76(1), 18-27.
[3]. Choon B. N., Yong H. T., & Bok M. G. (2012).
Recognizing Human Gender in Computer Vision: A Survey.
Lecture Notes in Computer Science, 7458,335-346.
[4]. Caifeng S. (2012). Learning local binary patterns for
gender classification on real-world face images. Pattern
Recognition Letters, 33(4), 431-437.
[5]. Hyun C. K., Daijin K., Zoubin G., & Sung Y. B. (2006).
Appearance-based gender classification with Gaussian
processes. Pattern Recognition Letters, 27(6), 618-626.
[6]. Mark H., Eibe F., Bernhard P., Peter R., & Iran H. W.
(2009). Weka 3: data mining software in Java. ACM
SIGKDD Explorations Newsletter .
http://www.cs.waikato.ac.nz/ml/weka/.
[7]. Priya G. N., &Banu, R. S. D. W. (2012). A Simplified
Local Binary Mean (SLBM) Based Human Gender
Classification. European Journal of Scientific Research,
71(3), 435-442.
[8]. Laura I., Agata L., &Ricard B. (2013). Robust gaitbased
gender classification using depth cameras.
Journal on Image and Video Processing, Vol.1, No.1-11.
[9]. Mozaffari S., Behravan H., &Akbari R. (2010). Gender
Classification using Single Frontal Image Per Person:
Combination of Appearance and Geometric Based
Features. Proceedings of International Conference on
Pattern Recognition, 1192-1195.
[10]. Shiqi Y., Tieniu T., Kaiqi H., Kui J., &Xinyu W. (2009).
Wu.A Study on Gait-Based Gender Classification. IEEE
Trans. on Image Processing, 18(8), 1905-1910.
[11]. Wen S. C., Chun R. H., & Chu S. C. (2013). Gender
classification from unaligned facial images using support
subspaces. Information Sciences, Vol.221, pp.98-109.