Ultrasonic Spray Pyrolysis Deposition of SDS Surfactant Assisted Copper Oxide Thin Films

Iqbal Singh*, Taminder Singh**
*-** Department of Physics, Khalsa College, Amritsar, India.
Periodicity:May - July'2014
DOI : https://doi.org/10.26634/jfet.9.4.2744

Abstract

In this paper an attempt has been made to study the impact of surfactant on the properties of the ultrasonically spray deposited CuO films. An aqueous solution of cupric nitrate trihydrate (Cu(NO ) .3H O) modified with Sodium Dodecyl 3 2 2 Sulphate (SDS) surfactant is used to deposit CuO films on glass substrate by Ultrasonic spray pyrolysis technique. The X'Pert Panlytical Diffractometer was employed for the phase identification of the films using Cu Kα radiation (λ = 1.5405 Å, 30mA, 40 kV) in 2θ range from 30-80°. The Field Emission Scanning Electron Micrographs (FESEM) and EDAX (Energy Dispersive Analysis of X-rays) spectrum were recorded on JEOL JSM-6700F Scanning Electron Microscope with a beam voltage of 30 kV. The depth profiler (Dektek 3030 XT) was employed for monitoring the film thickness and was found to be 400 ± 20 nm. The X-Ray Diffraction (XRD) studies of the films deposited at various substrate temperatures indicate the formation of monoclinic CuO with preferential orientation along the(002) plane for all samples. Surfactant modified films showed an increase in crystallite size of 35 nm at substrate temperature of 300 °C. The Scanning Electron Micrograph (FESEM) confirms the uniform distribution of facets like grains on the entire area of substrate. The results obtained in this study illustrate that SDS modified films show a significant reduction in the particle agglomeration thereby increasing the surface to volume ratio which in turn improves their sensing performance.

Keywords

Anionic Surfactant, Ultrasonic Spray Pyrolysis Technique, Monoclinic Cuo.

How to Cite this Article?

Singh, I., and Singh, T. (2014). Ultrasonic Spray Pyrolysis Deposition of SDS Surfactant Assisted Copper Oxide Thin Films . i-manager’s Journal on Future Engineering and Technology, 9(4), 17-23. https://doi.org/10.26634/jfet.9.4.2744

References

[1]. Ueda, N., Maeda, H., Hosono, H. & Kawazoe, H. (1998). Band-gap widening of CdO thin films, J. Appl. Phys. 84, 6174-6177.
[2]. Liu, H., Zhang, X., Li, L., Wang, Y. X., Gao, K. H., Li, Z. Q., Zheng, R. K., Ringer, S. P., Zhang, B. & Zhang, X. X. (2007). Role of point defects in room-temperature ferromagnetism of Cr-doped ZnO, Appl. Phys. Lett. 91, 0725111-3.
[3]. Zhu, H., Zhao, F., Pan, L., Zhang, Y., Fan, C., Zhang, Y. & Xiao, J. Q. (2007). Structural and magnetic properties of Mn-doped CuO thin films, J. Appl. Phys. 101, 09H1111-3.
[4]. Ferreira, F. F., Tabacniks, M. H., Fantinia, M. C. A., Fariab, I. C. & Gorensteinb, A. (1996). Electrochromic nickel oxide thin films deposited under different sputtering conditions, Solid State Ionics 86-88, 971-976.
[5]. Huanga, L. S., Yanga, S. G., Lia, T., Gua, B. X., Dua, Y. W., Lub, Y. N. & Shi, S. Z. (2004). Preparation of large-scale cupric oxide nanowires by thermal evaporation, J. Cryst. Growth 260, 130-135.
[6]. Brown, Kari E. R. & Choi, K. S. (2006). Electrochemical synthesis and characterization of transparent nanocrystalline Cu2O films and their conversion to CuO films, Chem. Commun. 3311-3313.
[7]. Serin, N., Serin, T., Horzum, S., & Celik Y. (2005) Annealing effects on the properties of copper oxide thin films prepared by chemical deposition, Semcond. Sci Technol. 20(5), 398.
[8]. Maruyama, T. (1998) Copper oxide thin films prepared from copper dipivaloylmethanate and oxygen by chemical vapor deposition, Jpn. J. Appl. Phys. 37, 4099- 4102.
[9]. Santra, K., Sarkar, C. K., Mukherjee, M. K. & Ghosh, B. (1992) Copper oxide thin films grown by plasma evaporation method, Thin Solid Films, 213, 226-229.
[10]. Drobny, V. F. & Pulfrey, D. L. (1979). Thin Soild Films, 61, 89-98.
[11]. Muthe, K. P., Vyas, J. C., Narang, S. N., Aswal, D. K., Gupta, S. K., Pinto, R., Kothiyal, G. P. & Sabharwal, S. B. (1998) A study of the CuO phase formation during thin film deposition by molecular beam epitaxy, Thin Solid Films, 324, 37-43.
[12]. Salarian, M., Hashjin, M. S., Shafiei, S. S., Salaria, R. & Nemati, Z. A. (2009) Template directed hydrothermal synthesis of dandelion like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol, Ceram. Int. 35, 2563-2569.
[13]. Pradhan, M., Sarkar, S., Sinha, A. K., Basu, M. & Pal, T. (2010) High yield synthesis of 1D Rh nanostructures from surfactant mediated reductive pathway and their shape transformation, J. Phys. Chem. C. 114, 16129-16142.
[14]. Alamolhoda, S., Seyyed Ebrahimi, S. A. & Badiei, A. (2006) A study on the formation of strontium hexaferrite nanopowder by a sol–gel auto-combustion method in the presence of surfactant, J. of Mag. Mater. 303, 69-72.
[15]. Zhang, Y., Wang, S., Li, X., Chen, L., Qian, Y. & Zhang, Z. (2006) CuO shuttle like nanocrystals synthesized by oriented attachment, J. Cryst. Growth 291,196-201.
[16]. Liu, Y., Chu, Y., Li, M., Li, L. & Dong, L. (2006) In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process, J. Mater. Chem. 16, 192-198.
[17]. Bedi, R. K. & Singh, I. (2010) Room temperature ammonia sensor based on cationic surfactant assisted nanocrystalline CuO, Appl. Mater. Interf., 2(5), 1361-1368.
[18] Kose, S., Atay, F., Bilgin, V. & Akyuz, I. (2009) Some physical properties of copper oxide films: the effect of substrate temperature, Mater. Chem. Phys. 111, 351-358.
[19]. Perednis, D. & Gauckler, L. J. (2005) Thin film deposition using spray pyrolysis, J. Electroceram. 14, 103- 111.
[20]. Lv, S., Wang, C., Zhou, T., Jing, S., Wu, Y. & Zhao C. (2009) In situ synthesis of ZnO nanostructures on a zinc substrate assisted with mixed cationic/anionic surfactants J. Alloys Compds. 477, 364-369
[21]. Elansezhian, R., Ramamoorthy, B. & Kesavan P. (2009) Nair The influence of SDS and CTAB surfactants on the surface morphology and surface topography of electrodless Ni-P deposits, J. Mater. Process. Technol. 209, 233-240.
[22]. Xu, C. K., Xu, G. D., Liu, Y. K. & Wang, G. H. (2002) A simple and novel route for the preparation of ZnO nanorods, Solid State Communications 122, 175-179.
[23]. Xu, H., Qin, D. H., Yang, Z. & Li, H. L. (2003) Fabrication and characterization of highly ordered zirconia nano wire arrays by sol–gel template method, Material Chemistry and Physics 80, 524-528.
[24]. Liang, J. H., Peng, C. & Wang, X. (2005) Chromate nanorods/nanobelts: general synthesis, characterization, and properties, Inorganic Chemistry 44, 9405-9415.
[25]. Jiaxiang, L., Da, W. U., Nan, Z. & Yue, W. (2010) Effects of surfactants on the structure and photoelectric properties of ITO films by sol-gel method, Rare Materials 29 (2),143-148.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.