References
[1]. Novak, C.J., Peckner, D. and Bernstein, I.M. (1977).
Handbook of stainless steels, McGraw-Hill, New York.
[2]. El-Tamimi, A.M. and El-Hossainy, T.M. (2008).
“Investigating the tool life, cutting force components, and
surface roughness of AISI 302 stainless steel material under
oblique machining”, Materials and Manufacturing
Processes, Vol. 23, pp. 427–438.
[3]. Ciftci, I. (2006). “Machining of austenitic stainless steels
using CVD multi-layer coated cemented carbide tools”,
Tribology International, Vol. 39, pp. 565–569.
[4]. Kulkarni, A., Joshi, G. and Sargade, V.G. (2013).
”Design optimisation of cutting parameters for turning of
AISI 304 austenitic stainless steel using Taguchi method”,
Indian Journal of Engineering & Materials Sciences, Vol. 20,
pp. 252-258.
[5]. Korkut, I., Kasap, M., Ciftci, I. and Seker, U. (2004).
“Determination of optimum cutting parameters during
machining of AISI 304 austenitic stainless steel”, Materials
and Design, Vol. 25, No. 4, pp. 303–305.
[6]. Lin, T. (2002). “Experimental design and performance
analysis of TiN-coated carbide tool in face milling stainless
steel”, Journal of Materials Processing Technology, Vol.
127, No. 1, pp. 1–7.
[7]. Abou-El-Hossein, K.A. and Yahya, Z. (2005). “Highspeed
end-milling of AISI 304 stainless steels using new
geometrically developed carbide inserts”, Journal of
Materials Processing Technology, Vol. 162/163, pp.
596–602.
[8]. Chockalingam, P. and Hong Wee, L. (2012). “Surface
roughness and tool wear study on milling of AISI 304
stainless steel using different cooling conditions”,
International Journal of Engineering and Technology, Vol.
2, No. 8, pp. 1386-1391.
[9]. Nordin, M., Sundström, R., Selinder, T.I. and Hogmark,
S. (2000). “Wear and failure mechanisms of multilayered
PVD TiN/TaN coated tools when milling austenitic stainless
steel”, Surface and Coating Technology, Vol. 133/134, pp.
240-246.
[10]. Tang, Y.S. and Wang, Y.S. (1994). “An adaptive fuzzy
control system for turning operations”, International Journal of Machine Tools and Manufacture, Vol. 33, No. 6, pp.
761–771.
[11]. Fang, X.D. (1995). “Expert system support fuzzy
diagnosis of finish turning process states”, International
Journal of Machine Tools and Manufacture, Vol. 35, No. 6,
pp. 913–924.
[12]. Ramesh, S., Karunamoorthy, L. and Palanikumar, K.
(2008). “'Fuzzy modeling and analysis of machining
parameters in machining titanium alloy”, Materials and
Manufacturing Processes, Vol. 23, pp. 439–447.
[13]. Palanikumar, K., Karunamoorthy, L., Karthikeyan, R.
and Latha, B. (2006). “Optimisation of machining
parameters in turning GFRP composites using a carbide
(K10) tool based on the Taguchi method with fuzzy logics”,
Metals and Materials, Vol. 12, No. 6, pp. 483–491.
[14]. Jiao, Y., Lei, S., Pei, Z.J. and Lee, E.S. (2004). “Fuzzy
adaptive networks in machining process modeling surface
roughness prediction for turning operations”, International
Journal of Machine Tools and Manufacture, Vol. 44, pp.
1643–1651.
[15]. Dweiri, F., Al-Jarrah, M. and Al-Wedyan, H. (2003).
”Fuzzy surface roughness modeling of CNC down milling of
Alumic-79”, Journal of Materials Processing Technology,
Vol. 133, No. 3, pp. 266–275.
[16]. Ronei Peres, C., Elias Haber Guerra, R., Haber Haber,
R., A. and Ros, S. (1999). “Fuzzy model and hierarchical
fuzzy control integration: an approach for milling process
optimisation”, Computers in Industry, Vol. 39, No. 3, pp.
199-207.
[17]. Razali, S.Z., Wong, S.V. and Ismail, N. (2011). “Fuzzy
Logic Modeling For Peripheral End Milling Process”,
Materials Science and Engineering, Vol. 17, doi:10.1088
/1757-899X/17/1/012050.
[18]. Latha, B. and Senthilkumar, V.S. (2009). “Fuzzy rule
based modeling of drilling parameters for delamination in
drilling GFRP composites”, Journal of Reinforced Plastics
and Composites, Vol. 28, pp. 951– 964.
[19]. Zafer, T. and Sezgin, Y. (2004). “Investigation of the
cutting parameters depending on process sound during
turning of AISI 304 austenitic stainless steel”, Materials and
Design, Vol. 25, pp. 507–513.
[20]. Zadeh, L.A. (2008). “Is there a need for fuzzy logic?”',
International Journal of Information Sciences, Vol. 178, pp.
2751-2779.
[21]. Kao, C.C., Shih, A.J. and Miller, S.F. (2008). “Fuzzy
Logic Control of Micro-hole Electrical Discharge
Machining”, Journal of Manufacturing Science and Engineering, Vol. 130, doi: 10.1115/1.2977827.
[22]. Tzeng, Y. and Chen, F. (2007). “Multi-objective
optimisation of high-speed Electrical Discharge Machining
process using a Taguchi fuzzy-based approach”, Materials
and Design, Vol. 28, No. 4, pp. 1159–1168.