References
[1]. Beldjilali, G. (january,2012). La pseudosym_etrie holomorphique, Mémoire de Magister, Université de Mascara, Algérie.
[2]. Belkhelfa, M. & Hasni, A. (2011). Symmetric propreties of Thurston geometry F4, Proceedings of the Conference RIGA
2011, Mihai, Adela (ed.) et al., Riemannian Geometry and Applications, Bucharest, Romania, 29{40.
[3]. Defever, F., Deszcz, R., & Verstraelen, L. (1997). On pseudo-symmetric para-Kahler manifolds, Colloq. Math, 74 ,253{260.
[4]. Eisenhart L.P. (1997). Riemannian geometry, Princeton University Press, Princeton, NJ.
[5]. Haesen, S., & Verstraelen, L. (2009). Natural Intrinsic Geometrical Symmetries, Symmetry, Integrability and Geometry:
Methods and Applications, SIGMA 5 , 086,15 pages.
[6]. Jelonek, W. (2009). Compact holomorphically pseudosymmetric Kählerian manifolds, Colloq. Math.; 117, 243-249.
[7]. Olszak, Z. (1989). Bochner at Kählerian manifolds with certain condition on the Ricci tensor, Simon Stevin, 63 , 295-303.
[8]. Olszak, Z. (2003). On the existence of pseudo-symmetric Kählerian manifolds, Colloq. Math, 95 , 185-189.
[9]. Olszak, Z. (2009). On compact holomorphically pseudosymmetric Kähler manifolds, Cent. Eur. J. Math., 7 , No. 3, 442-
451.
[10]. Olszak, Z. (Priprint). Weyl-pseudosymmetric and Bochner-pseudosymmetric Kählerian manifolds of dimension 4,
Preprint.
[11]. Tachibana, S. (1974). A theorem on Riemannian manifolds of positive curvature operator. Proc. Jpn. Acad. Ser. Math. Sci. 50, 301-302.