A robust method for stabilizing Fully Differential (FD) two stage amplifiers is presented in Figure 2(c) which is fast, guaranteed latch free, low offset while offering simpler tracking of compensation with some increase in power dissipation. Submicron processes with supply voltages ranging from 0.7 to 1.2 V place an ever increasing demand for efficient use of analog supply budget headroom, Common Mode (CM) offset (VOSCM ), differential offset (Vos), and noise erode dynamic range. Common Mode (CM) offset is an often overlooked error contribution of the CM feedback amplifier. The desirable qualities of a CM amplifier are, fast settling, latch up free operation under all transient conditions while being low power, contributing low noise, low VADCs to FD circuits, i.e. pipeline (Analog-to-Digital Convertors). It is widely known that, current feedback can be fast, limited only by the current gain bandwidth of the process [1,2]. The proposed CM current amplifier in Figure 2(c) avoids latching states while maintaining Common Mode FeedBack (CMFB) loop stability and simplifying CMFB compensation.