References
[1]. C. J. Novak, in: D. Peckner and I. M. Bernstein (Eds.)
(1977). Handbook of stainless steels, 4-1-4-78, McGraw-Hill,
New York.
[2]. Kosa Tetal, (1989). Machining of stainless steels
handbook, Ninth edition, ASM International.
> [3]. M. P. Groover, (1990). Fundamentals of modern
manufacturing-materials processes and systems,
Englewood Cliffs, NJ: Prentice-Hall.
[4]. S. H. Park, (1996). Robust Design and analysis for quality
engineering, Chapman & Hall, London.
[5]. M. S. Phadke, (1989). Quality engineering using robust
design, Prentice-Hall, Englewood Cliffs, NJ.
[6]. W. H. Yang and Y. S. Tarng, (1998). “Design optimisation
of cutting parameters for turning operations based on the
Taguchi method”, Journal of Materials Processing
Technology, Vol. 84, No. 1-3, pp. 122-129.
[7]. S. Thamizhmanii, S. Saparudin, and S. Hasan, (2007).
“Analysis of surface roughness by using Taguchi method”,
Achievements in Materials and ManufacturingEngineering, Vol. 20, pp. 503–505.
[8]. A. Bhattacharya, S. Das, P. Majumder, and A. Batish,
(2009). “Estimating the effect of cutting parameters on
surface finish and power consumption during high speed
machining of AISI 1045 steel using Taguchi design and
ANOVA”, Production Engineering, Vol. 3, pp. 31-40.
[9]. R. Ramanujam, R. Raju, and N. Muthukrishnan, (2010).
“Taguchi multi-machining characteristics optimisation in
turning of Al-15%SiCp composites using desirability
function analysis, Journal of Studies on Manufacturing, Vol.
1, No. 2-3, pp. 120-125.
[10]. Julie Z. Zhang, Joseph C. Chen, and E. Daniel Kirby,
(2007). “Surface roughness optimisation in an end-milling
operation using the Taguchi design method”, Journal of
Materials Processing Technology, Vol. 184, pp. 233-239.
[11]. S. Moshat, S. Data, A. Bandopaddhayay, and P. K.
Pal, (2010). “Optimisation of CNC milling process
parameters using PCA based Taguchi method”,
International Journal of Engineering, Science and
Technology, Vol. 2, No. 1, pp. 92-102.
[12]. B. Gopalsamy, B. Mondal, and S. Ghosh, (2009).
“Taguchi method and ANOVA: An approach for process
parameters optimisation of hard machining while
machining hardened steel”, Journal of Scientific &
Industrial Research, Vol. 68, pp. 686-695.
[13]. K. Kadirgama and M. M. Noor, (2008). “Optimisation of surface roughness in end milling on mould Aluminium alloys
(AA6061-T6) using Response surface method and Radian
basis function network”, Jordan Journal of Mechanical and
Industrial Engineering, Vol. 2, No. 4, pp. 209-214.
[14]. Mike S. Lou, Joseph C. Chen, and M. Caleb, (1999).
“Surface roughness prediction technique for CNC end
milling”, Journal of Industrial Technology, Vol. 15, pp. 01-06.
[15]. V. S. Thangarasu, G. Devaraj, and R. Siva
subramanian, (2012). “High speed CNC machining of AISI
304 stainless steel; optimisation of process parameters by
MOGA, International Journal of Engineering, Science and
Technology, Vol. 4, No. 3, pp. 66-77.
[16]. E. Abele and B. Frolich, (2008). “High speed milling of
titanium alloys”, Journal of Advances in Production
Engineering and Management, Vol. 3, pp. 131-138.
[17]. D. C. Montgomery, (1997). Design and analysis of
experiments, fourth edition New York: Wiley.
[18]. J. P. Davim, (2003). “Design of optimisation of cutting
parameters for turning metal matrix composites based on
the orthogonal arrays”, Journal of Material Processing
Technology, Vol. 132, pp. 340-344.
[19]. M. S. Chua, M. Rahman, Y. S. Wong, and H. T. Loh,
“Determination of optimal cutting conditions using design
of experiments and optimisation techniques”, International
journal of machine tools and manufacturing, vol. 33, pp.
297-305, 1993.