References
[1]. Leitao,L., Yang,L., & Jing,G. (2013). On Monolayer
Field-Effect Transistors at the Scaling Limit, Electron
Devices. IEEE Transactions on, Vol. 60 (12), pp. 4133 –
4139.
[2]. Rao,V.S.,et al.(2004). Bed of Nails - 100 microns pitch
wafer level interconnections process. Proceedings of
2004 Electronics Packaging Technology Conference, pp.
444.
[3]. Moore, G.(1975). Progress in Digital Integrated
Electronics.IEEE Tech., Digest, pp.11-13
[4]. Jeroen, W. G.,et al.(1998), Electronic structure of
atomically resolved carbon nanotubes. Nature, Vol. 391,
pp. 59
[5]. Curutchet A., (2008). et al.Nonlinear Characterization
and Modeling of Carbon Nanotube Field-Effect
Transistors. Microwave Theory and Techniques. IEEE
Transactions on, Vol. 56(7), pp. 1505-1510,
[6]. Ngo, Q.,Petranovic,D.,Krishnan, S.,Cassell, A. M.,Ye,
Q., Li,J., Meyyappan, M.,&Yang, C. Y. (2004). Electron
Transpor tin Multi wall Carbon Nano tubes .
Nanotechnology, IEEE Transactions on., Vol. 3(2), pp. 311-
317
[7]. Wagner, R. S. & Ellis,W.C. (1964). Vapor Liquid Solid
Mechanism of Single Crystal Groth, Appl. Phys. Lett.,Vol.
4,pp.89-90
[8]. Sorokin,P. B., et al. (2010). Metallic beta-phase silicon
nanowires: Structure and electronic properties, JETP
Letters, Vol.92 (5). pp. 352-355
[9]. Schmidt,V., Wittemann,J. V., Gösele,U. (2010).
Growth,Thermodynamics, and Electrical Properties of
Silicon Nanowires, American Chemical Society, Vol. 110
(1), pp. 361-388.
[10] . A r a d i , B . , R a m o s , L . E . , D e á k , P. , K ö h l e r,
Th.,Bechstedt,F.,Zhang, R. Q., & Frauenheim,Th. (2007).
Theoretical study of the chemical gap tuning in silicon
nanowires, Vol. 76 (3).
[11]. Lemme, M. C. (2010). Current Status of Graphene
Transistors. Solid State Phenomena, Vol. 156-158,pp. 499-
509.
[12]. Sako, R., Tsuchiya, H.,&Ogawa, M. (2011). Influence
of Band-Gap Opening on Ballistic Electron Transport in
Bilayer Graphene and Graphene Nanoribbon
FETs.Electron Devices, IEEE Transactions on, Vol. 58
(10),pp. 3300-3306.
[13]. Ouyang, Y., Yoon, Y.,&Jing,G. (2007). Scaling
Behaviors of Graphene Nanoribbon FETs: A Three
Dimensional Quantum Simulation Study, IEEE Transactions
on Electron Devices, Vol. 54, pp. 2223-2231
[14]. Javey, A.,Guo, J.,Wang,Q., Lundstrom, M.,& Dai,H.
J. (2003). Ballistic carbon nanotube field-effect transistors.
Nature, vol. 424, pp. 654-657.
[15]. Guo, J.&Lundstrom,M. S. (2002). A computational
study of thin body, double-gate, Schottky barrier MOSFETs.
IEEE Trans. on Electron Dev., Vol. 49, pp. 1897-1902.
[16]. Rahman,A., Guo,J., Datta, S.& Lundstrom, M. (2003).
Theory of ballistic nanotransistors. IEEE Trans. Electron
Dev., Vol. 50 (9), pp. 1853-1864.
[17]. Ouyang, Y.,Yoon, Y.,Fodor, J. K.,& Guo,J. (2006).
Comparison of performancelimitsfor carbon nanoribbon
and carbon nanotube transistors. Applied Physics Letters,
Vol. 89, pp. 203107.1-203107.3.
[18]. Lundstrom, M. & Guo,J. (2006). Nanoscale
transistors: device physics, modeling and simulation, New
York: Springer, Vol. 8,pp. 224.
[19]. Khan, A.,Ashraf, M.Haque, A. (2009). Wave function
penetration effects in double gate metal-oxidesemiconductor
field-effect-transistors: impact on ballistic
drain current with device scaling. Journal of Applied
Physics, Vol.105(6),pp. 064505 - 064505-5
[20]. Gildenblat, G., Li, X., Wu, W., Wang, H., Jha, A.,
Langevelde, R. V., et al. (2006). PSP: anadvanced
surface-potential-based MOSFET model for circuit
simulation, IEEE Trans. Electron. Dev., 53(9), pp. 1979-93