References
[1]. Jacobi, A.M., and Shah, R.K., (1995). “Heat Transfer Surface Enhancement Through the use of Longitudinal Vortices: A Review of Recent Progress”, Experimental Thermal Fluid Science, 11, pp.295-309.
[2]. Edwards, F.J., and Alkar, C.J.R., (1974). “The Improvement of Forced Convection Surface Heat Transfer Using Surface Protrusions in the Form of (A0 Cubes and (B) Vortex Generators”, Fifth International Heat Transfer Conference, Tokyo, 2, pp.244-248.
[3]. Russell, C.M.B., Jones, T.V., and Lee, G.H., (1982). “Heat Transfer Enhancement Using Vortex Generators”, Seventh International Heat Transfer Conference, New York, 2, pp.283-288.
[4]. Turk, A.Y., and Junkhan, G.H., (1986). “Heat Transfer Enhancement Downstream of Vortex Generators on a Flat Plate”, Eighth International Heat Transfer Conference, San Francisco, 6, pp.2903-2908.
[5]. Fiebig, M., Kallweit, P., and Mitra, N.K., (1986). “Wing Type Vortex Generators for Heat Transfer Enhancement”, Eighth International Heat Transfer Conference, San Francisco, 6, pp.2909-2913.
[6]. Biswas, G., Mitra, N.K., and Fiebig, M., (1989). “Computation of Laminar Mixed Convection Flow in a Channel with Wing-Type Built-in Obstacles”, Journal of Thermophysics, 3, No.4, pp.447-453.
[7]. Biswas G., and Chattopadhyay H., (1992). “Heat Transfer in a Channel with Built-in wing-Type Vortex Generators”, International Journal of Heat and Mass, 35, pp.803-814.
[8]. Gentery, M.C., and Jocobi, A.M., (1997). “Heat transfer Enhancement by delta-wing Vortex generators on Flat Plate: Vortex interactions with the boundary layer”, Experimental Thermal and Fluid science, 14, pp.231-242.
[9]. Brockmeier, U., Fiebig, M., Guntermann, T. and Mitra N.K., (1989). “Heat Transfer Enhancement in Fin-Plate Heat Exchangers by Wing Type Vortex Generators”, Chemical Engineering Technology, 12, pp.288-294.
[10]. Fiebig, M., Brockmeier, U., Mitra, N.K. and Guntermann, T., (1989). “Structure of Velocity and Temperature Fields in Laminar Channel Flows with Longitudinal Vortex Generators”, Numerical Heat Transfer, Part A, 15, pp.281-302.
[11]. Fiebig, M., Kallweit, P., Mitra, N.K., and Tiggelbeck, S., (1991). “Heat Transfer Enhancement and Drag by Longitudinal Vortex Generators in Channel Flow”, Experimental Thermal and Fluid Science, 34, pp.2431-2443.
[12]. Tiggelbeck, S., Mitra, N.K., and Fiebig M., (1992). “Flow Structure and Heat Transfer in a Channel with Multiple Longitudinal Vortex Generators”, Experimental Thermal and Fluid Science, 5, pp.425-436.
[13]. Tiggelbeck, S.T., Mitra, N.K., and Fiebig, M., (1993). “Experimental Investigations of Heat Transfer Enhancement and Flow Losses in a Channel with Double Rows of Longitudinal Vortex Generators”, International Journal of Heat and Mass Transfer, 36, pp.2327-2337.
[14]. Tigglbeck, N., Mitra, N.K. & Fiebig, M. (1994). “Comparison of Wing- type Vortex Generators for Heat Transfer Enhancement in channel flows”. Journal of heat transfer, 116, No 4, pp.880-885
[15]. Fiebig, M., Mitra, N., and Doge, Y.M., (1990). “Simultaneous Heat Transfer Enhancement and Flow Loss Reduction of Fin-Tubes,” Ninth International Heat Transfer Conference, 4, pp.51-56.
[16]. Fiebig, M., and Sanchez, M.A., (1992). “Enhancement of Heat Transfer and Pressure Loss by Winglet Vortex Generators in a Fin-Tube Element”, HTD ASME, 201, pp.7-14.
[17]. Biswas, G., Mitra, N.K., and .Fiebig, M., (1994). “Heat Transfer Enhancement in Fin-Tube Heat Exchangers by Winglet Vortex Generators”, International Journal of Heat and Mass Transfer, pp.37, 283-291.
[18]. Valencia, A., Fiebig, N.K., Mitra, M., and Leiner, W., (1992). “Heat Transfer and Flow Loss in a Fine-Tube Heat Exchanger Element with Wing-Type Vortex Generators”, Institution of Chemical Engineering Symposium Series, 1, No. 129, pp.327-333.
[19]. Fiebig, M., Valencia, A., and Mitra, N.K., (1993). “Wing-Type Vortex Generators for Fin-and-Tube Heat Exchangers”, Experimental Thermal and Fluid Science, 7, pp.287-295.
[20]. Fiebig, M., Valencia, A., and Mitra, N.K., (1994). “Local Heat Transfer and Flow Losses in Fin-and-Tube Heat Exchangers with Vortex Generators: A comparison of Round and Flat Tubes”, Experimental Thermal and Fluid Science, 8, pp.35-45.
[21]. Von, Stillfried, F., Wallin, S., and Johansson A.V., (2011). “Evaluation of a Vortex Generator Model in Adverse Pressure Gradient Boundary layer”, AIAA of Journal, 49, pp.982-993.
[22]. Sohankar, A., (2007). “Heat Transfer augmentation in a rectangular with Vee-shaped vortex generators”, International Journal heat and Fluid flow, .28, pp.306-317.
[23]. Sohankar, A. and Davidson, L., (2010). “Effect of Inclined Vortex Generator on Heat Transfer Enhancement in Three Dimensional channel”, International Journal heat and Fluid flow, 41, pp.433-488.
[24]. Nalawade, M.K. and Vedulla, R.P., (2006). “Heat Transfer Performance with an Array of Delta Wing Vortex Generators on Two Opposite Wall in a Square Duct”, Eighteen and Seventh ISHMT.ASME, Heat and Mass transfer conference, IIT Guwahati, India, pp.192-199.
[25]. Pesteei, S.M., Subbarao, P.M.V., and Agarwal, R.S., (2004). “Experimental Study of Winglet location on Heat Transfer and Pressure drop in fin-tub Heat Exchanger”, Applied Thermal Engineering, 25, pp.1684-1696.
[26]. Yanagihara, J.I., & Torii,K., (1992). “Enhancement of Laminar Boundary Layer Heat transfer by a Vortex Generator”, JSME International Series II, 35, pp.400-405.