Three-Phase Non Isolated Interleaved Boost Converter

R. Samuel Rajesh Babu*, M. Sonai**
* -** Sathyabama University, India.
Periodicity:August - October'2013
DOI : https://doi.org/10.26634/jps.1.3.2464

Abstract

This paper presents a Three-phase Non isolated Inter leaved boost converter (IBC) for high step up operation. Three-phase IBC has a number of boost converters connected in parallel with same switching frequency. Three-phase IBC are highly preferred to reduce the ripple current. A boost converter is used to clamp the voltage stresses of all the switches in the Inter leaved converter which is caused by the leakage inductance. This paper focuses on the leakage energies of the interleaved converter and are collected in a clamp capacitor and then recycled to the separate load by the clamp boost converter. Simulation and experiment results have been performed to understand the efficiency of three-phase IBC and the results have been validated.

Keywords

Conversion efficiency, Interleaved boost converter,Active clamp,High voltage gain

How to Cite this Article?

Babu, R. S. R., and Soani, M. (2013). Three-Phase Non Isolated Interleaved Boost Converter. i-manager’s Journal on Power Systems Engineering, 1(3), 21-27. https://doi.org/10.26634/jps.1.3.2464

References

[1]. L. Solero, A. Lidozzi, and J. A. Pomilio, (2005). “Design of Multiple-input Power Converter for Hybrid Vehicles,” IEEE Trans.Power Electron, Vol. 20, No. 5, pp. 107–116, Sep. 2005.
[2]. A. A. Ferreira, J. A. Pomilio, G. Spiazzi, and de Araujo Silva, (2008). “Energy Management Fuzzy Logic Supervisory for Electric Vehicle Power Supplies System,” IEEE Trans. Power Electron., Vol. 20, No. 1, pp. 107–115, Jan.
[3]. A. Emadi, K. Rajashekara, S. S. Williamson, and S. M. Lukic, (2007). “Topo- logical overview of Hybrid Electric and Fuel cell Vehicular Power System Architectures and Configurations,” IEEE Trans. Veh. Technol., Vol. 54, No. 3, pp. 763–770, May.
[4]. J. Baumanand M. Kazerani, (2008). “A comparative study of Fuel cell-battery, Fuel cell-ultracapacitor, and Fuel cellbattery- ultracapacitor vehicles,” IEEE Trans. Veh. Technol. Vol. 57, No. 2, pp. 760–769, Mar.
[5]. Q. Zhao and F. C. Lee, (2003). “High-efficiency, high step-up DC–DC con- verters,” IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 65–73, Jan.
[6]. I. Barbi and R. Gules, (2003). “Isolated DC-DC converters with high-output voltage for TWTA Telecommunication Satellite Applications,” IEEE Trans.Power Electron. , Vol. 18, No. 4, pp. 975–984.
[7]. I. Barbi and R. Gules, (2003). “Isolated DC-DC converters with high-output voltage for TWTA Telecommunication Satellite Applications,” IEEE Trans.Power Electron. , Vol. 18, No. 4, pp. 975–984.
[8]. M. Veerachary, T. Senjyu, and K. Uezato, (2003). “Neural-network-based maximum-power-point tracking of coupled-inductor interleaved boost- convertersupplied PV system using fuzzy controller,” IEEE Trans. Power Electron., Vol. 8, No. 4, pp. 749–758, Aug.
[9]. J. Marshall and M. Kazerani, (2004). “Design of an efficient fuel cell vehicle drive train, featuring a novel boost converter,” in Proc. IEEE Ind. Electron. Soc. Annu. Conf., Nov., pp. 1229–1234.
[10]. G. C.-Lopez, A. J. Forsyth, and D. R. Nuttall, (2006). “Design and Performance Evaluation of a 10-kW Interleaved boost converter for a fuel cell electric vehicle,” in Proc. IEEE Power Electron. Motion Control Conf., Aug., Vol. 2, pp. 1–5.
[11]. E. J. Cegnar, H. L. Hess, and B. K. Johnson, (2004). “A purely ultracapacitor energy storage system hybrid electric vehicles utilizing a based DC-DC boost converter,” in Proc. Appl. Power Electron. Conf. Expo., IEEE, Vol. 2, pp. 1160–1164.
[12]. N. Mohan, T. M. Undeland, and W. P. Robbins, (2002). Power Electronics, 3rd ed. New York: Wiley.
[13]. K. Hirachi, M. Yamanaka, K. Kajiyama, and S. Isokane, (2002). “Circuit configuration of bidirectional DC/DC converter specific for small scale loading system,” in Proc. IEEE Power Convers. Conf., pp. 603–609.
[14]. C. Y. Inaba, Y. Konishi, and M. Nakaoka, (2004). “High frequency PWM con- trolled step-up chopper type DC-DC Power Converters with Reduced Peak Switch Voltage Stress,” in Proc. IEE Proc.- Electr. Power Appl., Jan., pp. 47–52.
[15]. C. M. C. Duarte and I. Barbi, (2002). “An improved family of ZVS-PWM active- clamping DC-to-DC converters,” IEEE Trans. Power Electron., Vol. 17, No. 1, pp. 1–7, Jan."
[16]. W. Rong-Jong and D. Rou-Yong, (2005). “High stepup converter with coupled- inductor,” IEEE Trans. Power Electron., Vol. 20, No. 5, pp. 1025–1035, Sep.
[17]. W. Rong-Jong and D. Rou-Yong, (2005). “High- Efficiency Power Conversion for low power fuel cell Generation System,” IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 847–856, Jul.
[18]. C. Chang and M. A. Knights, (1995). “Interleaving technique in Distributed Power Conversion Systems,” IEEE Trans. Circuits Syst. I: Fund. Theory Appl., Vol. 42, No. 5, pp. 245–250, May.
[19]. M. T. Zhang, M. M. Jovanovi c, and F. C. Lee, (1998). “Analysis and evaluation of Interleaving techniques in Forward Converters,” IEEE Trans. Power Electron., Vol. 13, No. 4, pp. 690–698, Jul.
[20]. S. Dwari and L. Parsa, (2007). “A Novel High Efficiency High Power Interleaved Coupled Inductor Boost DC-DC converter for hybrid and fuel cell electric vehicle,” in Proc. IEEE Veh. Power Propulsion Conf., pp. 399–404.
[21]. W. Li and X. He, (2007). “An interleaved windingcoupled boost converter with Passive Lossless Clamp Circuits,” IEEE Trans. Power Electron. Vol. 22, No. 4, pp. 1499–1507, Jul.
[22]. W. Li and X. He, (2008). “A family of interleaved DC–DC converters deduced from a basic cell with Winding-Cross-Coupled Inductors (WCCIs) for high stepup or step-down conversions,” IEEE Trans. Power Electron., Vol. 23, No. 4, pp. 1791–1801, Jul.
[23]. K. Hirachi, M. Yamanaka, K. Kajiyama, and S. Isokane, (2002). “Circuit configuration of Bidirectional DC/DC converter specific for small scale loading system,” in Proc. IEEE PCC-Osaka, Vol. 2, pp. 603–609.
[24]. S. Dwari, S. Jayawant, T. Beechner, S. K. Miller, A. Mathew, M. Chen, J. Riehl, and J. Sun, (2006). “Dynamics characterization of coupled-inductor boost DC-DC converters,” in Proc. Compute Power Electron., IEEE Workshop, Jul. pp. 264–269.
[25]. S. Dwari and L. Parsa, (2011). “A efficient high step up interleaved DC-DC converter with an active clamp circuit,” in Proc. IEEE Trans. Power Electron., Vol. 26, No. 1, pp.1–13, Jan.
[26]. Q. Zhao and F. C. Lee, (2003). “High-efficiency, high step-up DC–DC converters,” IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 65–73, Jan.
[27]. J. Marshall and M. Kazerani, (2004). “Design of an efficient fuel cell vehicle drive train, featuring a novel boost converter,” in Proc. IEEE Ind. Electron. Soc.Annu. Conf., Nov., pp. 1229–1234.
[28]. G. C.-Lopez, A. J. Forsyth, and D. R. Nuttall, (2006). “Design and performance evaluation of a 10-kW Interleaved boost converter for a fuel cell electric vehicle,” in Proc. IEEE Power Electron. Motion Control Conf., Aug., Vol. 2, pp1– 5.
[29]. E. J. Cegnar, H. L. Hess, and B. K. Johnson, (2004). “A purely Ultra Capacitor Energy Storage System Hybrid Electric Vehicles utilizing a based DC-DC boost converter,” in Proc. Appl. Power Electron. Conf. Expo., IEEE, Vol. 2, pp. 1160– 1164.
[30]. C. Y. Inaba, Y. Konishi, and M. Nakaoka, (2004). “High frequency PWM controlled step-up chopper type DC-DC Power Converters with Reduced Peak Switch Voltage Stress,” in Proc. IEE Proc.- Electr. Power Appl., Jan., pp. 47–52.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.