References
[1]. L. Solero, A. Lidozzi, and J. A. Pomilio, (2005). “Design of Multiple-input Power Converter for Hybrid Vehicles,” IEEE Trans.Power Electron, Vol. 20, No. 5, pp. 107–116, Sep. 2005.
[2]. A. A. Ferreira, J. A. Pomilio, G. Spiazzi, and de Araujo Silva, (2008). “Energy Management Fuzzy Logic Supervisory for Electric Vehicle Power Supplies System,” IEEE Trans. Power Electron., Vol. 20, No. 1, pp. 107–115, Jan.
[3]. A. Emadi, K. Rajashekara, S. S. Williamson, and S. M. Lukic, (2007). “Topo- logical overview of Hybrid Electric and Fuel cell Vehicular Power System Architectures and Configurations,” IEEE Trans. Veh. Technol., Vol. 54, No. 3, pp. 763–770, May.
[4]. J. Baumanand M. Kazerani, (2008). “A comparative study of Fuel cell-battery, Fuel cell-ultracapacitor, and Fuel cellbattery- ultracapacitor vehicles,” IEEE Trans. Veh. Technol. Vol. 57, No. 2, pp. 760–769, Mar.
[5]. Q. Zhao and F. C. Lee, (2003). “High-efficiency, high step-up DC–DC con- verters,” IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 65–73, Jan.
[6]. I. Barbi and R. Gules, (2003). “Isolated DC-DC converters with high-output voltage for TWTA Telecommunication Satellite Applications,” IEEE Trans.Power Electron. , Vol. 18, No. 4, pp. 975–984.
[7]. I. Barbi and R. Gules, (2003). “Isolated DC-DC converters with high-output voltage for TWTA Telecommunication Satellite Applications,” IEEE Trans.Power Electron. , Vol. 18, No. 4, pp. 975–984.
[8]. M. Veerachary, T. Senjyu, and K. Uezato, (2003). “Neural-network-based maximum-power-point tracking of coupled-inductor interleaved boost- convertersupplied PV system using fuzzy controller,” IEEE Trans. Power Electron., Vol. 8, No. 4, pp. 749–758, Aug.
[9]. J. Marshall and M. Kazerani, (2004). “Design of an efficient fuel cell vehicle drive train, featuring a novel boost converter,” in Proc. IEEE Ind. Electron. Soc. Annu. Conf., Nov., pp. 1229–1234.
[10]. G. C.-Lopez, A. J. Forsyth, and D. R. Nuttall, (2006). “Design and Performance Evaluation of a 10-kW Interleaved boost converter for a fuel cell electric vehicle,” in Proc. IEEE Power Electron. Motion Control Conf., Aug., Vol. 2, pp. 1–5.
[11]. E. J. Cegnar, H. L. Hess, and B. K. Johnson, (2004). “A purely ultracapacitor energy storage system hybrid electric vehicles utilizing a based DC-DC boost converter,” in Proc. Appl. Power Electron. Conf. Expo., IEEE, Vol. 2, pp. 1160–1164.
[12]. N. Mohan, T. M. Undeland, and W. P. Robbins, (2002). Power Electronics, 3rd ed. New York: Wiley.
[13]. K. Hirachi, M. Yamanaka, K. Kajiyama, and S. Isokane, (2002). “Circuit configuration of bidirectional DC/DC converter specific for small scale loading system,” in Proc. IEEE Power Convers. Conf., pp. 603–609.
[14]. C. Y. Inaba, Y. Konishi, and M. Nakaoka, (2004). “High frequency PWM con- trolled step-up chopper type DC-DC Power Converters with Reduced Peak Switch Voltage Stress,” in Proc. IEE Proc.- Electr. Power Appl., Jan., pp. 47–52.
[15]. C. M. C. Duarte and I. Barbi, (2002). “An improved family of ZVS-PWM active- clamping DC-to-DC converters,” IEEE Trans. Power Electron., Vol. 17, No. 1, pp. 1–7, Jan."
[16]. W. Rong-Jong and D. Rou-Yong, (2005). “High stepup converter with coupled- inductor,” IEEE Trans. Power Electron., Vol. 20, No. 5, pp. 1025–1035, Sep.
[17]. W. Rong-Jong and D. Rou-Yong, (2005). “High- Efficiency Power Conversion for low power fuel cell Generation System,” IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 847–856, Jul.
[18]. C. Chang and M. A. Knights, (1995). “Interleaving technique in Distributed Power Conversion Systems,” IEEE Trans. Circuits Syst. I: Fund. Theory Appl., Vol. 42, No. 5, pp. 245–250, May.
[19]. M. T. Zhang, M. M. Jovanovi c, and F. C. Lee, (1998). “Analysis and evaluation of Interleaving techniques in Forward Converters,” IEEE Trans. Power Electron., Vol. 13, No. 4, pp. 690–698, Jul.
[20]. S. Dwari and L. Parsa, (2007). “A Novel High Efficiency High Power Interleaved Coupled Inductor Boost DC-DC converter for hybrid and fuel cell electric vehicle,” in Proc. IEEE Veh. Power Propulsion Conf., pp. 399–404.
[21]. W. Li and X. He, (2007). “An interleaved windingcoupled boost converter with Passive Lossless Clamp Circuits,” IEEE Trans. Power Electron. Vol. 22, No. 4, pp. 1499–1507, Jul.
[22]. W. Li and X. He, (2008). “A family of interleaved DC–DC converters deduced from a basic cell with Winding-Cross-Coupled Inductors (WCCIs) for high stepup or step-down conversions,” IEEE Trans. Power Electron., Vol. 23, No. 4, pp. 1791–1801, Jul.
[23]. K. Hirachi, M. Yamanaka, K. Kajiyama, and S. Isokane, (2002). “Circuit configuration of Bidirectional DC/DC converter specific for small scale loading system,” in Proc. IEEE PCC-Osaka, Vol. 2, pp. 603–609.
[24]. S. Dwari, S. Jayawant, T. Beechner, S. K. Miller, A. Mathew, M. Chen, J. Riehl, and J. Sun, (2006). “Dynamics characterization of coupled-inductor boost DC-DC converters,” in Proc. Compute Power Electron., IEEE Workshop, Jul. pp. 264–269.
[25]. S. Dwari and L. Parsa, (2011). “A efficient high step up interleaved DC-DC converter with an active clamp circuit,” in Proc. IEEE Trans. Power Electron., Vol. 26, No. 1, pp.1–13, Jan.
[26]. Q. Zhao and F. C. Lee, (2003). “High-efficiency, high step-up DC–DC converters,” IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 65–73, Jan.
[27]. J. Marshall and M. Kazerani, (2004). “Design of an efficient fuel cell vehicle drive train, featuring a novel boost converter,” in Proc. IEEE Ind. Electron. Soc.Annu. Conf., Nov., pp. 1229–1234.
[28]. G. C.-Lopez, A. J. Forsyth, and D. R. Nuttall, (2006). “Design and performance evaluation of a 10-kW Interleaved boost converter for a fuel cell electric vehicle,” in Proc. IEEE Power Electron. Motion Control Conf., Aug., Vol. 2, pp1– 5.
[29]. E. J. Cegnar, H. L. Hess, and B. K. Johnson, (2004). “A purely Ultra Capacitor Energy Storage System Hybrid Electric Vehicles utilizing a based DC-DC boost converter,” in Proc. Appl. Power Electron. Conf. Expo., IEEE, Vol. 2, pp. 1160– 1164.
[30]. C. Y. Inaba, Y. Konishi, and M. Nakaoka, (2004). “High frequency PWM controlled step-up chopper type DC-DC Power Converters with Reduced Peak Switch Voltage Stress,” in Proc. IEE Proc.- Electr. Power Appl., Jan., pp. 47–52.