References
[1]. A. Magden and Ö. Köse, (1997). On the curves of constant breadth in E space, Turkish J. Math. 21, No.3, 277-284.
[2]. A. P. Mellish, (1931). Notes on differential geometry, Ann. of Math. (2) 32, No. 1, 181- 190.
[3]. Bükcü B, Karacan MK (2009). "The Slant Helices According to Bishop Frame." Int. J. Comput. Math. Sci., 3(2): 67-70.
[4]. D. J. Struik, (1931). Differential geometry in the large, Bull. Amer. Math. Soc. 37, no. 2, 49-62.
[5]. E. Barbier, (1860). J. de Math. 2. No. 5, 272-286.
[6]. F. Reuleaux, (1963). The Kinematics of Machinery, Trans. by, A. B. W. Kennedy, Dover Pub, New York.
[7]. Gluck, H., (1966). Higher curvatures of curves in Euclidean space, Amer. Math. Monthly, 73, 699-704.
[8]. H. H. Hacisalihoglu, (2000). Differential Geometry, Ankara University Faculty of Science.
[9]. H. H. Hacisalihoglu and R. Öztürk, On the Characterization of Inclined Curves in E I. Tensor, N.S. Vol. 64, pp.163-170.
[10]. H. Tanaka, (1976). Kinematics Design of Cam Follower Systems, Doctoral Thesis, Columbia Univ.
[11]. L.R. Bishop, (1975). There is More Than one way to Frame a Curve, Am. Math. Monthly, 82(3): 246-251.
[12]. L. Euler, De curvis triangularibus, Acta Acad. Prtropol. (1778), (1780), 3-30.
[13]. M. Fujivara, On Space Curves of Constant Breadth, Tohoku Math. J. 5 (1914), 179-184.
[14]. M. Kazaz, M. Önder, and H. Kocayit, (2008). Space like curves of constant breadth in Minkowski 4-space, Int. J. Math.
Anal. (Ruse) 2, No. 21-24, 1061-1068.
[15]. M. Sezer, (1989). Differential equations characterizing space curves of constant breadth and a criterion for these
curves, Doga Mat. 13, No. 2, 70-78.
[16]. N. H. Ball, (1930). On Ovals, Amer. Math. Monthly 37, No. 7, 348-353.
.
[17]. Ö. Köse, (1986). On space curves of constant breadth, Doga Mat. 10 (1986), No. 1, 11{14.21, No. 3, 277-284
[18]. W. Blaschke, (1915). Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts, Math. Ann. 76, No. 4, 504-513.