References
[1]. Albina, D.O. (2005). Theory and Experience on
Corrosion of Waterwall and Superheater Tubes of Waste-
To-Energy Facilities. Master thesis, Columbia University.
[2]. Report (2000). Annual project report entitled
''Development of High-Efficiency Waste Power Generation
Technology, Development of Corrosion-Resistant
Superheater Materials”, prepared by the Japan Research
and Development Center for Metals (JRCM) for the New
Energy and Industrial Technology Development
Organization (NEDO), March 2000, Report No. 010020806-
5. Available from .
[3]. Assadi, H., Gartner, F., Stoltenhoff, T., & Kreye, H.
(2003). Bonding mechanism in cold gas spraying. Acta
Materialia, 51, 4379-4394.
[4]. Asteman, H., & Spiegel, M. A. (2008). Comparison of
the oxidation behaviours of Al O formers and Cr O formers 2 3 2 3
0 at 700 C – Oxide solid solutions acting as a template for
nucleation, Corrosion Science, 50, 1734-1743.
[5]. Bala, N., Singh, H., & Prakash, S. (2010). High
Temperature Corrosion Behavior of Cold Spray Ni-20Cr
o Coating on Boiler Steel in Molten Salt Environment at 900 C,
Journal of Thermal Spray Technology, 19(1-2), 110-118.
[6]. Bala, N., Singh, H., Prakash, S. (2010). Accelerated hot
corrosion studies of cold spray Ni–50Cr coating on boiler
steels, Materials and Design, 31, 244-253.
[7]. Bhushan, B., & Gupta, B. K. (1991). Handbook of tribology: Material coating and surface treatments, New
York: McGraw-Hill.
[8]. Blum, R. (1997). Preliminary consideration for design of
pulverized coal fired stem boiler with ultra supercritical
advance parameters Advanced (700 ?C) PF Power Plant,
EC Contact No.SF/1001/97/DK.
[9]. Bolelli, G., Lusvarghi, L., & Giovanardi, R. A. (2008).
Comparison between the corrosion resistances of some
HVOF-sprayed metal alloy coatings. Surface & Coatings
Technology, 202, 4793-4809.
[10]. Chen, W-H., & Chen, J-C. (2001). Combustion
Characteristics and Energy Recovery of a Small Mass Burn
Incinerator. Int. Comm. Heat Mass Transfers, 28(3), 299-
310.
[11]. Conner, J. A., Connor, W. B., & Ranking. (1994).
Protective coatings: Laboratory Vs. Field Experience. JOM,
46(12) 35-38.
[12]. Das, S., Datta, S., Basu, D., & Das, G.C. (2008). Hot
corrosion of glass coating on nickel base superalloy.
Ceramics International, 34, 1215-1222.
[13]. Datta, S. (2001). Studies on broad spectrum corrosion
resistant oxide coating. Bull. Material Science, 24, 569-
577.
[14]. Davis, J. R. (2004). Handbook of thermal spray
technology; Materials, Park, OH USA ASM international Ist
Ed.
[15]. Eliaz, N., Shemesh G., & TanLaision R.M. (2002). Hot
corrosion in gas turbine components. Eng. Fail. Anal., 9(1),
31-43.
[16]. Evans, N.D., Maziasz, P.J., Swindeman, R.W., & Smith,
G.D. (2004). Microstructure and phase stability in INCONEL
alloy 740 during creep. Scripta Mater, 51(6), 503-507.
[17]. Goebel, J.A., Pettit, F.S. & Goward, G.W., (1973).
Mechanisms for the Hot Corrosion of Nickel-Base Alloys.
Metall. Trans., 4, 261-275.
[18]. Goyal, T., Sidhu, T.S., & Walia, R.S. (2010). An overview
on cold spray process over competitive technologies for
electro technical applications. Proceeding AFTMME
Conference 2010.
[19]. Goyal, T., Walia, R.S., & Sidhu, T.S. (2012). Effect of Parameters on Coating Density for Cold Spray Process.
Materials and Manufacturing Processes, 27(2), 193-200.
[20]. Goyal, T., Walia, R.S., & Sidhu, T.S. (2012). Study of
Coating Thickness of Cold Spray Process Using Taguchi
Method, Materials and Manufacturing Processes, 27(2),
185-192.
[21]. Gurrappa, I. (2000). Hot Corrosion of Protective
Coatings. Materials and Manufacturing Processes, 15(5),
761-773.
[22]. Kamala, S., Jayaganthan, R., Prakash, S., & Kumarb,
S. (2007). Hot corrosion behavior of detonation gun
sprayed Cr C –NiCr coatings on Ni and Fe-based 3 2
superalloys in Na SO –60% V O environment at 9000C. 2 4 2 5
Journal of Alloys and Compounds, 463 (1-2), 358-372.
[23]. Karthikeyan, J. (2004). Cold spray technology:
International status and USA efforts, report by ASB Industries.
[24]. Koch G.H., Brongers, M.P.H., Thompson, N.G., Virmani,
Y.P., & Payer, J.H. (2002). Historic Congressional Study:
Corrosion Costs and Preventive Strategies in the United
States. Supplement to Mater. Perform., 1-11.
[25]. Labib, O. (2005). Evaluation of Medical Waste
Incinerators in Alexandria. The Journal of the Egyptian
Public Health Association, 80(3-4), 389-404.
[26]. Lee, S.H., Nickolas J.T, & Marco J.C. (2007). High-
Temperature Corrosion in Waste-to-Energy Boilers. Journal
of Thermal Spray Technology 16(1), 104-110.
[27]. Licata,A.J., Terracciano, L.A., Herbert, R.W., & Kaiser,
U. (1992). Design features for superheater corrosion control
in municipal waste combustors, in: G.Y. Lai, G. Sorell (Eds.),
Materials Performance in Waste Incineration Systems,
,paper No. 5-1, NACE, Houston, TX.
[28]. Lin, Z.J., Li, M.S., Wang, J.Y., & Zhou,Y.C. (2007). Hightemperature
oxidation and hot corrosion of Cr AlC. Acta 2
Materialia, 55, 6182–6191.
[29]. Liu, G., Li, M., Zhou, Y., & Zhang, Y. (2005). Hot
corrosion behaviour of Ti3SiC2 in the mixture
ofNa SO –NaCl melts. J. Euro. Ceram. Soc., 25, 1033- 2 4
1039.
[30]. Liu, P.S., Liang, K.M., & Gu, S.R. (2001). Hightemperature
oxidation behavior of aluminide coatings on
a new cobalt-base superalloy in air. Corrosion Science, 43, 1217-1226.
[31]. Matsubara, Y., Sochi, Y., Tanabe, M., & Takeya, A.
(2007). Advanced Coatings on Furnace Wall Tubes.
Journal of Thermal Spray Technology, 16(2),195-201.
[32]. Matthews, A., Artley, R.J. & Holiday, P., (1998). Future's
Bright for Surface Engineering, Mater.World, 6, 346-347.
[33]. Michelsen, H.P., Frandsen, F., Dam-Johansen,K., &
Larsen,O.H. (1998). Deposition and high temperature
corrosion in a 10 MW straw fired boiler. Fuel Processing
Technology, 54, 95-108.
[34]. Nicholls, J.R. (2000). Designing oxidation-resistant
coatings. JOM, 52(1) 28-35.
[35]. Otsuka, N. (2008). A thermodynamic approach on
vapor-condensation of corrosive salts from flue gas on
boiler tubes in waste incinerators. Corrosion Science, 50,
1627-1636.
[36]. Papyrin, A., Kosarev, V., klinkov, S., & Alkhimov, A..
(2007). Cold Spray Technology, 1st Edition, London, Elsevier.
[37]. Pardo, A., Merino, M.C., & Mohedano, M. (2009).
Corrosion behaviour of Mg/Al alloys with composite
coatings. Surface & Coating Technology, 203, 1252-1263.
[38]. Rapp, R.A (1994). Hot corrosion of materials:
Fundamental studies. JOM, 46(12), 47-55.
[39]. Rapp, R.A. (1986). Chemistry and electrochemistry of
the hot corrosion of metals. Corrosion, 42, 568-577.
[40]. Rena, X., Wang, F., & Wang, X. (2005). Hightemperature
oxidation and hot corrosion behaviors of the
NiCr–CrAl coating on a nickel-based superalloy. Surface &
Coatings Technology, 198, 425-431.
[41]. Richer, P., Yandouzi, M., & Beauvais, L. (2010).
Oxidation behaviour of CoNiCrAlY bond coats produced
by plasma, HVOF and cold gas dynamic spraying. Surface
& Coating Technology, 204, 3962-3974.
[42]. Richer, P., Zuniga, A.,Yandouzi, M., & Jodoin, B.
(2008). CoNiCrAlY microstructural changes induced
during Cold Gas Dynamic Spraying. Surface & Coatings
Technology, 203, 364–371.
[43]. Schmidt, T., Gartner, F., Assadi, H. (2006).
Development of a generalized parameter window for cold
spray deposition. Acta Mater, 54,729-742.
[44]. Sidhu, B S., & Prakash, S. (2006). Erosion-corrosion of
plasma as sprayed and laser remelted Stellite-6 coatings in
a coal fired boiler. Wear, 260, 1035–1044.
[45]. Sidhu, T.S., Agrawal, R.D., & Prakash, S. (2005). Hot
corrosion of some superalloys and role of high-velocity oxyfuel
spray coatings-a review. Surface & Coatings
Technology, 198, 441-446.
[46]. Simons, E.L., Browning, G.V., & Liebhatsky, H.A. (1955).
Sodium Sulfate in Gas Turbine. Corrosion, 11, 505t-514t.
[47]. Singh, H., Sidhu, T.S., Kalsi, S.B.S. (2012). Cold spray
Technology future of coating deposition process. Frattura
ed Integrità Strutturale, 22, 69-84.
[48]. Smith, G.D., Patel, S.J., Farr, N.C. & Hoffmann, M.
(1999). The Corrosion Resistance of Nickel Containing
Alloys in Coal-Fired Boiler Environments. Corrosion 99,
NACE International, Houston, 1999, pp.12.
[49]. Stoltenhoff, C., Borchers, F., & Gaertner (2006).
Microstructures and Key Properties of Cold-Sprayed and
Thermally Sprayed Copper Coatings. Surface & Coating
Technology, 200, 4947-4960.
[50]. Stott F. H., Wet D.J., & Taylor, R. (1994). The
degradation resistance of thermal barrier coatings to
molten deposits at very high temperatures. Trans. Mater.
Res. Soc. Jpn., 14A, 135-40.
[51]. Stroosnijder M. F., Mevrel, R., & Bennet, M.J. (1994).
The interaction of surface engineering and high
temperature corrosion protection. Mater. High Temp.,
12(1), 53-66.
[52]. Villafuerte, J., Wenyue Z. (2007). Corrosion protection
of magnesium alloys by cold spray. Advance Mater
Processes, 165, 53-54.
[53]. Wang, B.Q. (1996). Effect of alkali chlorides on
erosion-corrosion of cooled mild steel and Cr C -NiCr 3 2
coating, Wear 1996, 199, 268-274.
[54]. Wu, J.W., Fang, H.Y., & Yoon, S. (2006). Critical
velocities for high speed particle deposition in kinetic
spraying. Mater Trans, 47, 1723-1727
[55]. Wu, J.W., Fang, H.Y., & Yoon, S. (2006). The rebound
phenomenon in kinetic spraying deposition. Scripta Mater,
54, 665-669.
[56]. Yoshiba M. (1993). Effect of hot corrosion on the
mechanical performances of superalloys and coating
systems, Corrosion Science, 35(5-8), 1115–1124.
[57]. Yukawa, K., & Bousei-Kanri. (1995). Corrosion Control.
8, 275-280 (in Japanese).
[58]. Zenga, C.L., & Lia, B.J. (2005). Electrochemical
impedance studies of molten (0.9Na,0.1K)2SO4-induced
o hot corrosion of the Ni-based superalloy M38G at 900 C in
air. Electrochimica Acta, 50, 5533-5538.
[59]. Zhang, Q., Li, C.J., & Li, C.X. (2008). Study of oxidation
behavior of nanostructured NiCrAlY bond coatings
deposited by cold spraying. Surface & Coating
Technology, 202, 3378-3384.
[60]. Zhang, Q., Li, C.J., Li, Y. (2008). Thermal failure of
nano structured thermal barrier coatings with cold-sprayed nano structured NiCrAlY bond coat. J Thermal Spray
Technology, 17, 838-845.
[61]. Zhao, W.M., Wang, Y., Han, T., Wu, K.Y., & Xue. (2004).
Electrochemical evaluation of corrosion resistance of
NiCrBSi coatings deposited by HVOF. Surface & Coatings
Technology, 183 (1), 118-125.
[62]. Zhao, W.M.,Wang, Y., Dong, L.X., Wu, K.Y., & Xue.
(2005). Corrosion mechanism of NiCrBSi coatings
deposited by HVOF, J. Surface & Coatings Technology,
190(1-2), 293-298.
[63]. Zwahr, H. (2003). Ways to Improve the Efficiency of
Waste to Energy Plants for the Production of Electricity, Heat
th and Reusable Materials, Proceedings of the 11 North
America Waste to Energy Conference, Florida.