References
[1]. Bouktif, S., Ahmed, F., Khalil, I. & Antoniol, G. (2010). A novel composite model approach to improve software quality prediction, Information and Software Technology, Elsevier, Vol52, pp.1298-1311.
[2]. Breiman, L. (2001). Random Forest, Machine Learning Vol.45, pp.5-32.
[3]. Catal, C. & Diri, B. (2009). A systematic review of software fault prediction studies, Expert Systems with Applications, Elsevier, Vol. 36,pp. 7346-7354.
[4]. Catal, C. & Diri, B. (2009). Investigating the effect of data set size, metrics set and features selection Techniques on software fault prediction problems, Information Sciences, Vol.179, pp. 1040-1058.
[5]. Catal, C. (2012). Performance Evaluation Metrics for Software Fault-Prediction Studies, Acta Polytechnica Hungarica, Vol. 9,no.4.
[6]. Chidamber, S. R. & Kemerer, C.F. (1994). A metrics suite for object oriented design, Software Engineering, IEEE Transactions on, Vol.20, no.6, pp.476,493, doi: 10.1109/32.295895.
[7]. Hall, T., Beecham, S., Bowes, D., Gray, D. & Comsell, S. (2011). A Systematic Review of Fault Prediction Performance in Software Engineering, in Lero: The IRISH software Engineering Research Centre, Lero Technical Report Lero-TR-2011-03.
[8]. Jureczko, M., & Madeyski, L. (2010). Towards identifying software project clusters with regard to defect prediction, Proceedings of the 6th International Conference on Predictive Models in Software Engineering (Promise-10) held at Timisoara, Romania, published in ACM, New York, USA. http://doi.acm.org/10.1145/ 1868328.1868342.
[9]. Khoshgoftaar, T.M., & Seilya, N. ( 2002). Software Quality Classification modeling using the SPRINT decision tree algorithm, Proceeding of 4th IEEE International Conference on Tools with Artificial Intelligence, Washington, D.C, pp.365-374.
[10]. Landwehr, N., Hall, M., & Frank, E. (2005). Logistic Model Tree, Machine Learning, Vol. 59, issue 1-2, pp. 161-205.
[11]. Malhotra, R., & Jain, A. (2011). Software Fault Prediction for object oriented systems: A Literature Review, ACMSIGSOFT Software Engineering Notes, Vol. 36, no 5.
[12]. Pai, G.J. & Dugan, J. B. (2007). Emperical analysis of software fault content and fault proneness using Bayesian methods, IEEE Transactions on Software Engineering, Vol. 33,pp. 675-686.
[13]. Pressman, R.S. (2005). Software Engineering - A Practioner's Approach, Sixth Edition, McGraw Hill Publication.
[14]. Quinlan, J.R. (1993). C 4.5:Programs for Machine Learning, Morgan Kaufman Publishers.
[15]. Tian, J. (2005). Software Quality Engineering, Wiley India Edition.
[16]. Twala, B. (2011). Software Fault Prediction Using Multiple Classifiers, in IEEE.
[17]. WEKA:http//www.cs.waikato.ac.nz/ml/weka.