References
[1]. V. E. Wanger, (1993). “Effects of harmonics on
equipment,” IEEE Trans. Power Del., Vol. 8, No. 2, pp.
672–680.
[2]. J. C. Das, (2004). “Passive filters-potentialities and
limitations,” IEEE Trans. Ind.Appl, Vol. 40, No. 1, pp. 232–241.
[3]. K. K. Shyu, M. J. Yang, Y. M. Chen, and Y. F. Lin, (2008).
“Model reference adaptive control design for a shunt
active-power-filter system,” IEEE Trans. Ind. Electron., Vol.
55, No. 1, pp. 97–106.
[4]. L. Asiminoaei, E. Aeloiza, P. N. Enjeti, and F. Blaabjerg,
(2008). “Shunt activepower-filter topology based on
parallel interleaved inverters,” IEEE Trans.Ind. Electron.,
Vol. 55, No. 3, pp. 1175–1189.
[5]. A. Luo, Z. K. Shuai, W. J. Zhu, and Z. J. Shen, (2009).
“Combined system for harmonic suppression and
reactive power compensation,” IEEE Trans. Ind. Electron.,
Vol. 56, No. 2, pp. 418–428.
[6]. B. Singh and V. Verma, (2006). “An indirect current
control of hybrid power filter for varying loads,” IEEE Trans.
Power Del., Vol. 21, No. 1, pp. 178–184.
[7]. D. Rivas, L. Moran, J. W. Dixon, and J. R. Espinoza,
(2003). “Improving passive filter compensation
performance with active techniques,” IEEE Trans. Ind.
Electron., Vol. 50, No. 1, pp. 161–170.
[8]. V. F. Corasaniti, M. B. Barbieri, P. L. Arnera, and M. I.
Valla, (2009). “Hybrid active filter for reactive and
harmonics compensation in a distribution network,” IEEE
Trans. Ind. Electron., Vol. 56, No. 3, pp. 670–677.
[9]. K. P. Lin, M. H. Lin, and T. P. Lin, (1998). “An advanced
computer code for single-tuned harmonic filter design,” IEEE Trans. Ind. Appl., Vol. 34, No. 4, pp. 640–643.
[10]. C. J. Chou, C. W. Liu, J. Y. Lee, and K. D. Lee, (2000).
“Optimal planning oflarge passive-harmonic-filter set at
high voltage level,” IEEE Trans. PowerSyst., Vol. 15, No. 1,
pp. 433–441.
[11]. Y. M. Chen, (2003). “Passive filter design using
genetic algorithms,” IEEE Trans. Ind. Electron., Vol. 50, No.
1, pp. 202–207.
[12]. Z. S. Guang, W. Y. Ping, and J. L. Cheng, (2004).
“Adaptive genetic algorithm based optimal design
approach for passive power filters,” Proc. Chin. Soc. Elect.
Eng., Vol. 24, No. 7, pp. 173–176.
[13]. Y. P. Chang and C. J. Wu, (2005). “Optimal
multiobjective planning of large scale passive harmonic
filters using hybrid differential evolution method
considering parameter and loading uncertainty,” IEEE
Trans. Power Del., Vol. 20, No. 1, pp. 408–416.
[14]. B. Duro, V. S. Ramsden, and P. Muttik, (1999).
“Minimization of active filter rating in high power hybrid
filter system,” in Proc. IEEE Int. Conf. Power Electron. Drive
Syst., Hong Kong, pp. 1043–1048.
[15]. HE et al.: Application of PSO to Passive and Hybrid
Active Power Filter Design 2851.
[16]. C. J. Ling, J. X. Jian, and Z. D. Qi, (2006). “Multiobject
optimization of hybrid active power filter based on
genetic algorithm,” J. Tsinghua Univ. Sci. Technol., Vol. 46,
No. 1, pp. 5–8.
[17]. J. Kennedy and R. Eberhart, (1995). “Particle swarm
optimization,” in Proc. IEEE Int. Conf. Neural Netw., Perth,
Australia, Vol. 4, pp. 1942–1948.
[18]. Y. D. Valle, G. K. Venayagamoorthy, S. Mohagheghi,
J. C. Hernandez, and R. G. Harley, (2008). “Particle swarm
optimization: Basic concepts, variants and applications in
power systems,” IEEE Trans. Evol. Comput., Vol. 12, No. 2,
pp. 171–195.
[19]. L. S. Coelho and B. M. Herrera, (2007). “Fuzzy
identification based on a chaotic particle swarm
optimization approach applied to a nonlinear Yo-yo
motion system,” IEEE Trans. Ind. Electron., Vol. 54, No. 6,
pp. 3234–3245.
[20]. S. Dutta and S. P. Singh, (2008). “Optimal
rescheduling of generators for congestion management based on particle swarm optimization,” IEEE Trans. Power
Syst., Vol. 23, No. 4, pp. 1560–1569.