References
[1]. Early Treatment Diabetic Retinopathy Study Research Group. (1991). “Early photocoagulation for diabetic retinopathy,” Ophthalmology, Vol. 98, pp. 766–85.
[2]. L.Vincent. (1993). “Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms,” IEEE Trans. Image Process., Vol. 2, pp. 176–201, Apr. 1993.
[3]. T. Spencer., J.A. Olson,K.C.McHardy.,P .F.Sharp., & J. V.Forrester. (1996). “An image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus,” Comput. Biomed. Res., Vol. 29, pp. 284–302.
[4]. M. J. Cree., J. A. Olson., K. C. McHardy., P. F. Sharp, & J. V. Forrester. (1997). “A fully automated comparative micro aneurysm digital detection system,” Eye, Vol. 11, pp. 622–628.
[5]. A. Mendonca., A. Campilho., & J. Nunes. (1999). “Automatic segmentation of microaneurysms in retinal angiograms of diabetic patients,” in Proc. Int. Conf. Image Anal. Process., pp. 728–733.
[6]. L. Gagnon., M. Lalonde., M. Beaulieu., & M. C. Boucher. (2001). “Procedure to detect anatomical structures in optical fundus images,” in Proc. SPIE Med. Imag.: Image Process.,Vol. 4322, pp. 1218–1225.
[7]. F. Zana., & J. C. Klein (2001). “Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation,” IEEE Trans. Image Process., Vol. 10, No. 7, pp. 1010–1019.
[8]. K. H. Jarman., D. S. Daly., K. K. Anderson., & K. L. Wahl.(2003). “A new approach to automated peak detection,” Chemometr. Intell. Lab., Vol. 69, pp. 61–76.
[9]. M. Niemeijer., J. Staal., M. D. Abramoff., M. A. Suttorp-Schulten., & B. van Ginneken. (2005). “Automatic detection of red lesions in digital color fundus photographs,” IEEE Trans. Med. Imag., Vol. 24, No. 5, pp. 584–592.
[10]. A. D. Fleming., S. Philip., & K. A. Goatman. (2006). “Automated micro aneurysm detection using local contrast normalization and local vessel detection,” IEEE Trans. Med. Imag., Vol. 25, No. 9, pp. 1223–1232.
[11]. T. Walter., P. Massin., A. Arginay., R. Ordonez., C. Jeulin., & J. C. Klein. (2007). “Automatic detection of microaneurysms in color fundus images,” Med. Image Anal., Vol. 11, pp. 555–566.
[12]. F. Zana, & J. C. Klein (2001). “Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation,” IEEE Trans. Image Process., Vol. 10, No. 7, pp. 1010–1019, Jul. 2001.
[13]. M. Niemeijer., J. Staal., M. D. Abramoff., M. A. Suttorp-Schulten., & B. van Ginneken. (2005). “Automatic detection of red lesions in digital color fundus photographs,” IEEE Trans. Med. Imag., Vol. 24, No. 5, pp. 584–592.
[14]. P. J. Kertes., & T. M. Johnson, Eds. (2007). “Evidence Based Eye Care”. Philadelphia, PA: Lippincott Williams & Wilkins.
[15]. G. Quellec., M. Lamard., P. Josselin., G. Cazuguel., B. Cochener., & C.Roux. (2008). “Optimal wavelet transform for the detection of microaneurysms in retina photographs,” IEEE Trans. Med. Imag., Vol. 27, No. 9, pp.1230–1241, Sep. 2008.
[16]. A. Mizutani, C. Muramatsu, Y. Hatanaka, S. Suemori, T. Hara, and H. Fujita (2009). “Automated microaneurysm detection method based on double ring filter in retinal fundus images,” in Proc. SPIE Med. Imag. Comput.-Aided Diagnosis, 2009, Vol. 72601N.
[17]. B. Zhang., X. Wu., J. You., Q. Li., & F. Karray. (2010). “Detection of microaneurysms using multi-scale correlation coefficients,” Pattern Recognit., Vol. 43, No. 6, pp. 2237–2248.
[18]. K. Ram., G. D. Joshi., & J. Sivaswamy. (2011). “A successive clutter-rejection-based approach for early detection of diabetic retinopathy,” IEEE Trans. Biomed. Eng., Vol. 58, No. 3, pp. 664–673.
[19]. B. Antal., & A. Hajdu. (2012). “An ensemble-based system for microaneurysmdetection and diabetic retinopathy grading,” IEEE Trans. Biomed. Eng., Vol. 59, No. 6, pp. 1720–1726, Jun. 2012.