References
[1]. J. P. Aubin and A. Cellina, (1984). Differential Inclusions, Springer-Verlag.
[2]. A. M. A. El-sayed and Yassine Khouni, (2012). Measurable-Lipschitz selections and set-valued integral equations of fractional order, 1-8.
[3]. A. M. A. El-sayed and A. G. (1995). Ibrahim, Multivalued fractional differential equations, Applied Mathematics and Computation. 68, 15-25.
[4]. Rabha. W. Ibrahim, (2009). Existence of convex and non convex local solutions for fractional differential inclusions. 18, 1-13.
[5]. V. V. Chistyakov, A. Nowak, (2005). Regular Caratheodory-type selectors under no convexity assumptions, Journal of Functional Analysis 225 247-262.
[6]. M. Kisielewicz, (1991). Differential Inclusions and optimal control. Dordrecht, the Nether-Lands.
[7]. Georgi V. Smirnov, (2002). Introduction to the theory of Differential Inclusions. American Mathematical Society, providence.
[8]. M. Ailalioubrahim, (2010). Neumann boundary-value problems for Differential inclusions in Banach spaces, Electronic Journal of Differential Equations, Vol. 2010, No. 104, pp. 1-5.
[9]. P. Bettiol and H. Frankowska, (2007). Regularity of solution maps of differential inclusions under state constraints, Set-Valued Anal 15, 21-45.
[10]. A. I. Bulgakov and V. V. Vasilyev, (2002). On the theory of functional-differential inclusion of neutral type, 9, 33-52.
[11]. A.G. Ibrahim, (1991). On differential inclusion with memory, in Proc. Math. Phys. Soc. Egypt, 67.
[12]. Ravi P. Agarwal, Maria Meehan & Donal O’Regan, Fixed point theory and applications. Cambridge tracts in mathematics.141.