References
[3].
Dharani, M. K., Thamilselvan, R., Natesan, P., Kalaivaani, P. C. D., & Santhoshkumar, S. (2021). Review on crop prediction using deep learning techniques. In Journal of Physics: Conference Series, 1767(1), 012026. IOP Publishing.
[4]. Fernando, M. T. N., Zubair, L., Peiris, T. S. G., Ranasinghe, C. S., & Ratnasiri, J. (2007). Economic value of climate variability impacts on coconut production in Sri Lanka. AIACC Working Papers, 45, 1-7.
[5]. Govindwar, R., Jawale, S., Kalpande, T., Zade, S., Futane, P., & Williams, I. (2023). Crop and fertilizer recommendation system using machine learning. In AI, IoT, Big Data and Cloud Computing for Industry 4.0 (pp. 139-149). Cham: Springer International Publishing.
[6]. Gupta, A., Nagda, D., Nikhare, P., & Sandbhor, A. (2021). Smart crop prediction using IoT and machine learning. International Journal of Engineering Research & Technology (IJERT), 9(3), 18-21.
[10].
Li, D., Miao, Y., Gupta, S. K., Rosen, C. J., Yuan, F., Wang, C., & Huang, Y. (2021). Improving potato yield prediction by combining cultivar information and UAV remote sensing data using machine learning. Remote Sensing, 13(16), 3322.
[11]. Marenych, M., Verevska, O., Kalinichenko, A., & Dacko, M. (2014). Assessment of the impact of weather conditions on the yield of winter wheat in Ukraine in terms of regional. Annals of Scientific Association of Agricultural Economists and Agribusiness, 16(2), 183-188.
[13].
Myers, R. H., Montgomery, D. C., Vining, G. G., Borror, C. M., & Kowalski, S. M. (2004). Response surface methodology: a retrospective and literature survey. Journal of Quality Technology, 36(1), 53-77.
[14]. Nischitha, K., Vishwakarma, D., Ashwini, M. N., & Manjuraju, M. R. (2020). Crop prediction using machine learning approaches. International Journal of Engineering Research & Technology (IJERT), 9(08), 23-26.
[15]. Patil, P., Panpatil, V., & Kokate, S. (2020). Crop prediction system using machine learning algorithms. International Research Journal of Engineering and Technology (IRJET), 7(02).
[18].
Rashid, M., Bari, B. S., Yusup, Y., Kamaruddin, M. A., & Khan, N. (2021). A comprehensive review of crop yield prediction using machine learning approaches with special emphasis on palm oil yield prediction. IEEE Access, 9, 63406-63439.
[19]. Raunak Jahan, R. J. (2018). Applying Naive Bayes Classification Technique for Classification of Improved Agricultural Land Soils.
[21]. Sawicka, B., Noaema, A. H., Gáowacka, A., Zdunek, B., & Olszáwka, M. (2016). The predicting the size of the potato acreage as a raw material for bioethanol production. Alternative Energy Sources, 158-172.
[22]. Sawicka, B., Noaema, A. H., Hameed, T. S., & Krochmal-Marczak, B. (2017). Biotic and abiotic factors influencing on the environment and growth of plants. Proceedings Bioroznorodnosc Srodowiska Znaczenie, Problemy, Wyzwania. Materialy Konferencyjne, Pulawy.
[23]. Tiwari, Y., Verma, A., & Khari, M. (2024). Data-Driven Precision Agriculture for Crop Prediction and Fertilizer Recommendation Using Machine Learning. In Emerging Technologies and Marketing Strategies for Sustainable Agriculture (pp. 167-183). IGI Global Scientific Publishing.
[25].
You, J., Li, X., Low, M., Lobell, D., & Ermon, S. (2017). Deep gaussian process for crop yield prediction based on remote sensing data. In Proceedings of the AAAI Conference on Artificial Intelligence, 31(1).